Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

A new player in the puzzle of filovirus entry

Abstract

Viruses of the genera Ebolavirus and Marburgvirus are filoviruses that cause haemorrhagic fever in primates, with extremely high fatality rates. Studies have focused on elucidating how these viruses enter host cells, with the aim of developing therapeutics. The ebolavirus glycoprotein has been found to play key parts in all steps of entry. Furthermore, recent studies have identified Niemann–Pick C1 (NPC1), a protein that resides deep in the endocytic pathway, as an important host factor in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of EBOV.
Figure 2: EBOV GP priming and triggering: possible roles of NPC1.

Similar content being viewed by others

References

  1. Feldmann, H. & Geisbert, T. W. Ebola haemorrhagic fever. Lancet 377, 849–862 (2011).

    Article  Google Scholar 

  2. Sullivan, N. J., Martin, J. E., Graham, B. S. & Nabel, G. J. Correlates of protective immunity for Ebola vaccines: implications for regulatory approval by the animal rule. Nature Rev. Microbiol. 7, 393–400 (2009).

    Article  CAS  Google Scholar 

  3. Kuhn, J. H. et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 155, 2083–2103 (2010).

    Article  CAS  Google Scholar 

  4. Borio, L. et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287, 2391–2405 (2002).

    Article  Google Scholar 

  5. Miranda, M. E. & Miranda, N. L. Reston ebolavirus in humans and animals in the Philippines: a review. J. Infect. Dis. 204 (Suppl. 3), S757–S760 (2011).

    Article  Google Scholar 

  6. Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, e1002304 (2011).

    Article  CAS  Google Scholar 

  7. Dube, D. et al. Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry. Proc. Natl Acad. Sci. USA 107, 16637–16642 (2010).

    Article  CAS  Google Scholar 

  8. Backovic, M. & Rey, F. Virus entry: old viruses, new receptors. Curr. Opin. Virol. 2, 4–13 (2012).

    Article  CAS  Google Scholar 

  9. Matsuno, K. et al. C-type lectins do not act as functional receptors for filovirus entry into cells. Biochem. Biophys. Res. Commun. 403, 144–148 (2010).

    Article  CAS  Google Scholar 

  10. Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).

    Article  CAS  Google Scholar 

  11. Simmons, G. et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305, 115–123 (2003).

    Article  CAS  Google Scholar 

  12. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    Article  CAS  Google Scholar 

  13. Dube, D. et al. The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding. J. Virol. 83, 2883–2891 (2009).

    Article  CAS  Google Scholar 

  14. Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    Article  CAS  Google Scholar 

  15. Lee, J. E. & Saphire, E. O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 4, 621–635 (2009).

    Article  CAS  Google Scholar 

  16. Shimojima, M., Ikeda, Y. & Kawaoka, Y. The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196 (Suppl. 2), S259–S263 (2007).

    Article  CAS  Google Scholar 

  17. Takada, A. et al. Downregulation of β1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278, 20–26 (2000).

    Article  CAS  Google Scholar 

  18. Brindley, M. A. et al. Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 415, 83–94 (2011).

    Article  CAS  Google Scholar 

  19. Schornberg, K. L. et al. α5β1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc. Natl Acad. Sci. USA 106, 8003–8008 (2009).

    Article  CAS  Google Scholar 

  20. Mulherkar, N., Raaben, M., de la Torre, J. C., Whelan, S. P. & Chandran, K. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology 419, 72–83 (2011).

    Article  CAS  Google Scholar 

  21. Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6, e1001121 (2010).

    Article  Google Scholar 

  22. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).

    Article  Google Scholar 

  23. Bharat, T. A. et al. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 9, e1001196 (2011).

    Article  CAS  Google Scholar 

  24. Sanchez, A., Geisbert, T. & Feldmann, H. in Fields Virology (eds Knipe, D. & Howley, P.) 1407–1448 (Lippincott Williams and Wilkins, 2007).

    Google Scholar 

  25. Teissier, E., Penin, F. & Pecheur, E.-I. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 16, 221–250 (2011).

    Article  CAS  Google Scholar 

  26. Tilton, J. C. & Doms, R. W. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res. 85, 91–100 (2010).

    Article  CAS  Google Scholar 

  27. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  Google Scholar 

  28. Cote, M. et al. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

    Article  CAS  Google Scholar 

  29. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 6 Mar 2012 (doi:10.1038/emboj.2012.53).

    Article  CAS  Google Scholar 

  30. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    Article  CAS  Google Scholar 

  31. White, J. M., Delos, S. E., Brecher, M. & Schornberg, K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43, 189–219 (2008).

    Article  CAS  Google Scholar 

  32. Harrison, S. C. Viral membrane fusion. Nature Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  Google Scholar 

  33. Wool-Lewis, R. J. & Bates, P. Endoproteolytic processing of the Ebola virus envelope glycoprotein: cleavage is not required for function. J. Virol. 73, 1419–1426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neumann, G. et al. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J. Virol. 81, 2995–2998 (2007).

    Article  CAS  Google Scholar 

  35. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645 (2005).

    Article  CAS  Google Scholar 

  36. Schornberg, K. et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80, 4174–4178 (2006).

    Article  CAS  Google Scholar 

  37. Hood, C. L. et al. Biochemical and structural characterization of cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity. J. Virol. 84, 2972–2982 (2010).

    Article  CAS  Google Scholar 

  38. Dias, J. M. et al. A shared structural solution for neutralizing ebolaviruses. Nature Struct. Mol. Biol. 18, 1424–1427 (2011).

    Article  CAS  Google Scholar 

  39. Kuhn, J. H. et al. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem. 281, 15951–15958 (2006).

    Article  CAS  Google Scholar 

  40. Manicassamy, B., Wang, J., Jiang, H. & Rong, L. Comprehensive analysis of Ebola virus GP1 in viral entry. J. Virol. 79, 4793–4805 (2005).

    Article  CAS  Google Scholar 

  41. Brindley, M. A. et al. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J. Virol. 81, 7702–7709 (2007).

    Article  CAS  Google Scholar 

  42. Mpanju, O. M., Towner, J. S., Dover, J. E., Nichol, S. T. & Wilson, C. A. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res. 121, 205–214 (2006).

    Article  CAS  Google Scholar 

  43. Wong, A. C., Sandesara, R. G., Mulherkar, N., Whelan, S. P. & Chandran, K. A forward genetic strategy reveals destabilizing mutations in the Ebolavirus glycoprotein that alter its protease dependence during cell entry. J. Virol. 84, 163–175 (2010).

    Article  CAS  Google Scholar 

  44. Brecher, M. et al. Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion relevant conformational change. J. Virol. 86, 364–372 (2012).

    Article  CAS  Google Scholar 

  45. Kaletsky, R. L., Simmons, G. & Bates, P. Proteolysis of the Ebola glycoproteins enhances virus binding and infectivity. J. Virol. 81, 13378–13384 (2007).

    Article  CAS  Google Scholar 

  46. Gregory, S. M. et al. Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. Proc. Natl Acad. Sci. USA 108, 11211–11216 (2011).

    Article  CAS  Google Scholar 

  47. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  Google Scholar 

  48. Epp, N., Rethmeier, R., Kramer, L. & Ungermann, C. Membrane dynamics and fusion at late endosomes and vacuoles – Rab regulation, multisubunit tethering complexes and SNAREs. Eur. J. Cell Biol. 90, 779–785 (2011).

    Article  CAS  Google Scholar 

  49. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  Google Scholar 

  50. Pryor, P. R. & Luzio, J. P. Delivery of endocytosed membrane proteins to the lysosome. Biochim. Biophys. Acta 1793, 615–624 (2009).

    Article  CAS  Google Scholar 

  51. Frolov, A. et al. Cholesterol overload promotes morphogenesis of a Niemann-Pick C (NPC)-like compartment independent of inhibition of NPC1 or HE1/NPC2 function. J. Biol. Chem. 276, 46414–46421 (2001).

    Article  CAS  Google Scholar 

  52. Lloyd-Evans, E. & Platt, F. M. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11, 419–428 (2010).

    Article  CAS  Google Scholar 

  53. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    Article  CAS  Google Scholar 

  54. Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).

    Article  CAS  Google Scholar 

  55. Deffieu, M. S. & Pfeffer, S. R. Niemann–Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc. Natl Acad. Sci. USA 108, 18932–18936 (2011).

    Article  CAS  Google Scholar 

  56. Lozach, P.-Y., Huotari, J. & Helenius, A. Late-penetrating viruses. Curr. Opin. Virol. 1, 35–43 (2011).

    Article  CAS  Google Scholar 

  57. Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Med. 14, 1247–1255 (2008).

    Article  CAS  Google Scholar 

  58. Liu, R., Lu, P., Chu, J. W. & Sharom, F. J. Characterization of fluorescent sterol binding to purified human NPC1. J. Biol. Chem. 284, 1840–1852 (2009).

    Article  CAS  Google Scholar 

  59. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001).

    Article  CAS  Google Scholar 

  60. Sobo, K. et al. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS ONE 2, e851 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant U54 AI057168 from the US National Institutes of Health for funding work on EBOV entry, M. Brecher and S. Gregory for help with figure 2b, and M. Brecher, D. Castle and J. Shoemaker for helpful comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Judith M. White's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J., Schornberg, K. A new player in the puzzle of filovirus entry. Nat Rev Microbiol 10, 317–322 (2012). https://doi.org/10.1038/nrmicro2764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing