Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From the regulation of peptidoglycan synthesis to bacterial growth and morphology

Key Points

  • Peptidoglycan synthesis is regulated at multiple levels to ensure shape-maintaining growth and cell division.

  • Peptidoglycan synthases and hydrolases coordinate to enlarge the sacculus. Coordinated enzyme activity is also required for cell division and morphogenesis.

  • Peptidoglycan synthesis and the localization and movement of cytoskeletal elements are interdependent.

  • Peptidoglycan synthases and hydrolases are also regulated by outer-membrane proteins.

  • Peptidoglycan growth is sensitive to mechanical force.

  • Peptidoglycan is remodelled in a growth-dependent manner, and its growth is tied to metabolic inputs.

Abstract

How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptidoglycan synthesis and cleavage.
Figure 2: Different peptidoglycan synthesis complexes are active at different stages of the Escherichia coli cell cycle.
Figure 3: Force generation by cytoskeletal elements.
Figure 4: Species-specific non-catalytic regions in penicillin-binding proteins.
Figure 5: Regulation of peptidoglycan synthesis by outer-membrane proteins.

Similar content being viewed by others

References

  1. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Höltje, J.-V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998). A landmark review on peptidoglycan synthesis in E. coli , with details of the '3 for 1' growth model.

    PubMed  PubMed Central  Google Scholar 

  4. Barreteau, H. et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 168–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bouhss, A., Trunkfield, A. E., Bugg, T. D. & Mengin-Lecreulx, D. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32, 208–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011). An article that identifies a member of the conserved SEDS (shape, elongation, division and sporulation) family of integral membrane proteins as the elusive lipid II flippase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778, 1714–1734 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Suginaka, H., Blumberg, P. M. & Strominger, J. L. Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J. Biol. Chem. 247, 5279–5288 (1972).

    CAS  PubMed  Google Scholar 

  9. Yousif, S. Y., Broome-Smith, J. K. & Spratt, B. G. Lysis of Escherichia coli by β-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J. Gen. Microbiol. 131, 2839–2845 (1985).

    CAS  PubMed  Google Scholar 

  10. Budd, A., Blandin, S., Levashina, E. A. & Gibson, T. J. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol. 5, R38 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bertsche, U. et al. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 61, 675–690 (2006). The first study to provide evidence for a direct interaction between peptidoglycan synthases.

    Article  CAS  PubMed  Google Scholar 

  12. Bertsche, U., Breukink, E., Kast, T. & Vollmer, W. In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J. Biol. Chem. 280, 38096–38101 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Born, P., Breukink, E. & Vollmer, W. In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281, 26985–26993 (2006). Together with reference 12, this work establishes a novel in vitro peptidoglycan assay for simultaneous detection of GTase and TPase products, demonstrating that these activities are coupled, and reconstitutes for the first time the naturally occurring reaction of TPase-mediated attachment of newly made peptidoglycan to the sacculus.

    Article  CAS  PubMed  Google Scholar 

  14. Sung, M. T. et al. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl Acad. Sci. USA 106, 8824–8829 (2009). This article describes the crystal structure of PBP1B, which includes the transmembrane region, and suggests a model for the coupling of GTase and TPase reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30, 673–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Heidrich, C. et al. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Priyadarshini, R., Popham, D. L. & Young, K. D. Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188, 5345–5355 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heidrich, C., Ursinus, A., Berger, J., Schwarz, H. & Höltje, J.-V. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J. Bacteriol. 184, 6093–6099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraft, A. R., Prabhu, J., Ursinus, A. & Höltje, J.-V. Interference with murein turnover has no effect on growth but reduces β -lactamase induction in Escherichia coli. J. Bacteriol. 181, 7192–7198 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, J. T. & Uehara, T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72, 211–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gan, L., Chen, S. & Jensen, G. J. Molecular organization of Gram-negative peptidoglycan. Proc. Natl Acad. Sci. USA 105, 18953–18957 (2008). In this study, ECT solves a long-standing dispute about the orientation of the glycan chains in the single-layered peptidoglycan in Gram-negative bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burman, L. G. & Park, J. T. Molecular model for elongation of the murein sacculus of Escherichia coli. Proc. Natl Acad. Sci. USA 81, 1844–1848 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glauner, B. & Höltje, J.-V. Growth pattern of the murein sacculus of Escherichia coli. J. Biol. Chem. 265, 18988–18996 (1990). A paper that illustrates the alterations in peptidoglycan structure that occur during maturation.

    CAS  PubMed  Google Scholar 

  25. Goodell, E. W., Markiewicz, Z. & Schwarz, U. Absence of oligomeric murein intermediates in Escherichia coli. J. Bacteriol. 156, 130–135 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Uehara, T. & Park, J. T. Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J. Bacteriol. 190, 3914–3922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Jonge, B. L. et al. Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion. J. Bacteriol. 171, 5783–5794 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cabeen, M. T. & Jacobs-Wagner, C. The bacterial cytoskeleton. Annu. Rev. Genet. 44, 365–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003). This work uses labelling of peptidoglycan synthesis sites to determine the topography of peptidoglycan growth in rod-shaped bacteria with or without MreB.

    Article  CAS  PubMed  Google Scholar 

  30. Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001). A seminal paper demonstrating that MreB filaments control cell elongation.

    Article  CAS  PubMed  Google Scholar 

  31. Vats, P., Shih, Y. L. & Rothfield, L. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol. Microbiol. 72, 170–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Alyahya, S. A. et al. RodZ, a component of the bacterial core morphogenic apparatus. Proc. Natl Acad. Sci. USA 106, 1239–1244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bendezu, F. O., Hale, C. A., Bernhardt, T. G. & de Boer, P. A. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J. 28, 193–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Kruse, T., Bork-Jensen, J. & Gerdes, K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Shiomi, D., Sakai, M. & Niki, H. Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J. 27, 3081–3091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Ent, F. et al. Dimeric structure of the cell shape protein MreC and its functional implications. Mol. Microbiol. 62, 1631–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Mohammadi, T. et al. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 65, 1106–1121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van den Ent, F., Johnson, C. M., Persons, L., de Boer, P. & Löwe, J. Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J. 29, 1081–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gitai, Z., Dye, N. A., Reisenauer, A., Wachi, M. & Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Karczmarek, A. et al. DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Mol. Microbiol. 65, 51–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Takacs, C. N. et al. MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J. Bacteriol. 192, 1671–1684 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Gitai, Z., Dye, N. & Shapiro, L. An actin-like gene can determine cell polarity in bacteria. Proc. Natl Acad. Sci. USA 101, 8643–8648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popp, D. et al. Filament structure, organization, and dynamics in MreB sheets. J. Biol. Chem. 285, 15858–15865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Biteen, J. S. & Moerner, W. E. Single-molecule and superresolution imaging in live bacteria cells. Cold Spring Harb. Perspect. Biol. 2, a000448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, S. Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. & Moerner, W. E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 103, 10929–10934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dominguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Garner, E. C. et al. Circumferential motions of the cell wall synthesis machinery drive cytoskeletal dynamics in B. subtilis. Science 333, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011). References 47–49 describe high-resolution fluorescence microscopy showing peptidoglycan synthesis-dependent movement of MreB perpendicular to the long axis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol. 71, 1131–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. White, C. L., Kitich, A. & Gober, J. W. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol. Microbiol. 76, 616–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Land, A. D. & Winkler, M. E. Requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J. Bacteriol. 193, 4166–4179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  54. Erickson, H. P., Anderson, D. E. & Osawa, M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aarsman, M. E. et al. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 55, 1631–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Aaron, M. et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64, 938–952 (2007). This investigation demonstrates the FtsZ-dependent preseptal phase of cell elongation in C. crescentus.

    Article  CAS  PubMed  Google Scholar 

  57. de Pedro, M. A., Quintela, J. C., Höltje, J.-V. & Schwarz, H. Murein segregation in Escherichia coli. J. Bacteriol. 179, 2823–2834 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fraipont, C. et al. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 157, 251–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Buddelmeijer, N. & Beckwith, J. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52, 1315–1327 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Masson, S. et al. Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. J. Biol. Chem. 284, 27687–27700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wissel, M. C. & Weiss, D. S. Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J. Bacteriol. 186, 490–502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rico, A. I., Garcia-Ovalle, M., Palacios, P., Casanova, M. & Vicente, M. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol. Microbiol. 76, 760–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Bernard, C. S., Sadasivam, M., Shiomi, D. & Margolin, W. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol. Microbiol. 64, 1289–1305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerding, M. A. et al. Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J. Bacteriol. 191, 7383–7401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ursinus, A. et al. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 186, 6728–6737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Müller, P. et al. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J. Biol. Chem. 282, 36394–36402 (2007).

    Article  PubMed  Google Scholar 

  67. Goley, E. D. et al. Assembly of the Caulobacter cell division machine. Mol. Microbiol. 80, 1680–1698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Briegel, A. et al. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol. Microbiol. 62, 5–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Li, Z. & Jensen, G. J. Electron. cryotomography: a new view into microbial ultrastructure. Curr. Opin. Microbiol. 12, 333–340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Charbon, G., Cabeen, M. T. & Jacobs-Wagner, C. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev. 23, 1131–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003). This work identifies the first bacterial IF protein, CreS, which is required for the bent cell shape of C. crescentus.

    Article  CAS  PubMed  Google Scholar 

  72. Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth. EMBO J. 28, 1208–1219 (2009). A study which shows that mechanical force on the cell envelope, generated by CreS, causes C. crescentus and E. coli cells to grow with a bent shape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bagchi, S., Tomenius, H., Belova, L. M. & Ausmees, N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol. Microbiol. 70, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kühn, J. et al. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 29, 327–339 (2010). An article describing the identification of a new class of bacterial cytoskeleton proteins: the bactofilins.

    Article  CAS  PubMed  Google Scholar 

  75. Koch, M. K., McHugh, C. A. & Hoiczyk, E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol. Microbiol. 80, 1031–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141, 822–833 (2010). This investigation demonstrates that peptidoglycan endopeptidases and a bactofilin participate in generating the helical cell shape in H. pylori.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, S., Arellano-Santoyo, H., Combs, P. A. & Shaevitz, J. W. Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc. Natl Acad. Sci. USA 107, 9182–9185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takeuchi, S., DiLuzio, W. R., Weibel, D. B. & Whitesides, G. M. Controlling the shape of filamentous cells of Escherichia coli. Nano Lett. 5, 1819–1823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamant, O. & Traas, J. The mechanics behind plant development. New Phytol. 185, 369–385 (2010).

    Article  PubMed  Google Scholar 

  80. Sliusarenko, O., Cabeen, M. T., Wolgemuth, C. W., Jacobs-Wagner, C. & Emonet, T. Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology. Proc. Natl Acad. Sci. USA 107, 10086–10091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Furchtgott, L., Wingreen, N. S. & Huang, K. C. Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria. Mol. Microbiol. 81, 340–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Osawa, M., Anderson, D. E. & Erickson, H. P. Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J. 28, 3476–3484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Foulquier, E., Pompeo, F., Bernadac, A., Espinosa, L. & Galinier, A. The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in Bacillus subtilis. Mol. Microbiol. 80, 309–318 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Chaudhuri, R. R. et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10, 291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ingerson-Mahar, M., Briegel, A., Werner, J. N., Jensen, G. J. & Gitai, Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature Cell Biol. 12, 739–746 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. de Pedro, M. A., Young, K. D., Höltje, J.-V. & Schwarz, H. Branching of Escherichia coli cells arises from multiple sites of inert peptidoglycan. J. Bacteriol. 185, 1147–1152 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nelson, D. E. & Young, K. D. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182, 1714–1721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Potluri, L. et al. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol. Microbiol. 77, 300–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Markiewicz, Z., Glauner, B. & Schwarz, U. Murein structure and lack of DD- and LD-carboxypeptidase activities in Caulobacter crescentus. J. Bacteriol. 156, 649–655 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bernhardt, T. G. & de Boer, P. A. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48, 1171–1182 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uehara, T., Dinh, T. & Bernhardt, T. G. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 191, 5094–5107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Uehara, T., Parzych, K. R., Dinh, T. & Bernhardt, T. G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peters, N. T., Dinh, T. & Bernhardt, T. G. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193, 4973–4983 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goley, E. D., Comolli, L. R., Fero, K. E., Downing, K. H. & Shapiro, L. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol. Microbiol. 77, 56–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Möll, A., Schlimpert, S., Briegel, A., Jensen, G. J. & Thanbichler, M. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol. Microbiol. 77, 90–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poggio, S., Takacs, C. N., Vollmer, W. & Jacobs-Wagner, C. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol. Microbiol. 77, 74–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bonis, M., Ecobichon, C., Guadagnini, S., Prevost, M. C. & Boneca, I. G. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol. 78, 809–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Legaree, B. A. & Clarke, A. J. Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa. J. Bacteriol. 190, 6922–6926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morlot, C., Uehara, T., Marquis, K. A., Bernhardt, T. G. & Rudner, D. Z. A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. Genes Dev. 24, 411–422 (2010). This and reference 93 show for the first time that septum-splitting peptidoglycan hydrolases require activation by other proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Typas, A. et al. Regulation of peptidoglycan synthesis by outer membrane proteins. Cell 143, 1097–1109 (2010). Together with reference 101, this work demonstrates that peptidoglycan synthesis is controlled from outside the sacculus by newly identified outer-membrane lipoproteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Clarke, C. A., Scheurwater, E. M. & Clarke, A. J. The vertebrate lysozyme inhibitor Ivy functions to inhibit the activity of lytic transglycosylase. J. Biol. Chem. 285, 14843–14847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jensen, L. J. et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Han, S. et al. Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. J. Am. Chem. Soc. 133, 20536–20545 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Gerding, M. A., Ogata, Y., Pecora, N. D., Niki, H. & de Boer, P. A. The trans-envelope Tol–Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63, 1008–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yeh, Y. C., Comolli, L. R., Downing, K. H., Shapiro, L. & McAdams, H. H. The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J. Bacteriol. 192, 4847–4858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zimmermann, U. Physics of turgor- and osmoregulation. Annu. Rev. Plant Physiol. 29, 121–148 (1978).

    Article  CAS  Google Scholar 

  110. Cayley, D. S., Guttman, H. J. & Record, M. T. Jr. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78, 1748–1764 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Doyle, R. J. & Marquis, R. E. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol. 2, 57–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Koch, A. L. Shrinkage of growing Escherichia coli cells by osmotic challenge. J. Bacteriol. 159, 919–924 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Koch, A. L. & Woeste, S. Elasticity of the sacculus of Escherichia coli. J. Bacteriol. 174, 4811–4819 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yao, X., Jericho, M., Pink, D. & Beveridge, T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181, 6865–6875 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sochacki, K. A., Shkel, I. A., Record, M. T. & Weisshaar, J. C. Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys. J. 100, 22–31 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vollmer, W. & Seligman, S. J. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18, 59–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Jiang, H. & Sun, S. X. Morphology, growth, and size limit of bacterial cells. Phys. Rev. Lett. 105, 028101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Glauner, B., Höltje, J.-V. & Schwarz, U. The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095 (1988).

    CAS  PubMed  Google Scholar 

  119. Vollmer, W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32, 287–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Lam, H. et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552–1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011). Together with reference 120, this paper shows that unusual D -amino acids are secreted and linked to peptidoglycan in many bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lupoli, T. J. et al. Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. J. Am. Chem. Soc. 133, 10748–10751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kolodkin-Gal, I. et al. D-amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nature Methods 5, 789–795 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Typas, A. et al. High-throughput, quantitative analyses of genetic interactions in E. coli. Nature Methods 5, 781–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011). This article describes a high-throughput chemical genomic screen that provides links for the function of numerous orphan proteins in E. coli.

    Article  CAS  PubMed  Google Scholar 

  128. Andre, G. et al. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nature Commun. 1, 27 (2010).

    Article  CAS  Google Scholar 

  129. Scheuring, S. & Dufrene, Y. F. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol. Microbiol. 75, 1327–1336 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Hayhurst, E. J., Kailas, L., Hobbs, J. K. & Foster, S. J. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl Acad. Sci. USA 105, 14603–14608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Turner, R. D. et al. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nature Commun. 1, 26 (2010).

    Article  CAS  Google Scholar 

  132. Mingorance, J. et al. Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J. Biol. Chem. 280, 20909–20914 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, K. C., Mukhopadhyay, R., Wen, B., Gitai, Z. & Wingreen, N. S. Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl Acad. Sci. USA 105, 19282–19287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kern, T. et al. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J. Am. Chem. Soc. 132, 10911–10919 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Kern, T. et al. Toward the characterization of peptidoglycan structure and protein–peptidoglycan interactions by solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 5618–5619 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Alexeeva, S., Gadella, T. W. Jr, Verheul, J., Verhoeven, G. S. & den Blaauwen, T. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol. Microbiol. 77, 384–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Osawa, M., Anderson, D. E. & Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science 320, 792–794 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matias, V. R., Al-Amoudi, A., Dubochet, J. & Beveridge, T. J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185, 6112–6118 (2003). Together with reference 82, this study demonstrates that membrane-attached FtsZ is sufficient to produce a constrictive force in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the UK Biotechnology and Biological Sciences Research Council (BB/G015902/1 and BBI020012/1 to W.V.), the European Commission (DIVINOCELL HEALTH-F3-2009-223,431 to W.V.), the Royal Society (to W.V.) and the US National Institutes of Health (R01 GM085697, ARRA GM085697-01S1 and R01 GM036278 to C.A.G., and K99GM092984 to A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Vollmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Waldemar Vollmer's homepage

Glossary

Sacculus

A bag-like macromolecule that is made of peptidoglycan chains crosslinked by short peptides. The sacculus completely encases the cytoplasmic membrane in most bacteria, and isolated sacculi retain the shape of the bacterial cell.

Bacterial cytoskeleton

A filamentous and often dynamic cytoplasmic structure that includes bacterial structural homologues of actin, tubulin or intermediate filaments and is essential for bacterial growth, motility, cell division, morphology and DNA segregation.

Actin

A eukaryotic cytoskeletal protein with ATPase activity. MreB and ParM, two bacterial proteins involved in cell elongation and plasmid partitioning, respectively, are distant actin homologues.

Tubulin

A cytoskeletal protein that forms microtubules in eukaryotes; the bacterial tubulin-like protein, FtsZ, is a GTPase and forms dynamic filaments to drive cell division.

Penicillin-binding proteins

(PBPs). A protein family involved in the synthesis (the class A and class B PBPs) or hydrolysis (the class C PBPs) of D-amino acid–D-amino acid peptide bonds. They contain an active-site Ser residue that participates in the transfer of an acyl compound to an amino group or water. PBPs are the targets of β-lactam antibiotics (such as penicillin). Pathogen resistance to β-lactams can be caused by low-affinity PBPs.

β-lactam antibiotics

An important class of antibiotics, members of which contain a β-lactam ring and inhibit peptidoglycan synthesis by covalent binding to the active-site Ser of penicillin-binding proteins.

Autolysins

Proteins that are located in the periplasm of Gram-negative bacteria or in the cell wall of Gram-positive bacteria and can lyse the cell using their peptidoglycan-hydrolysing activity. Autolysins can have muramidase, glucosaminidase, amidase and/or endopeptidase activity.

Electron cryotomography

(ECT). An electron microscopy technique that provides high-resolution pictures of an object from different angles, permitting its three-dimensional reconstitution; plunge-freezing of the samples prevents staining and fixation artefacts. In the case of the bacterial sacculus, ECT has yielded a nanometre-scale three-dimensional representation of the fine structure.

Intermediate filaments

Filaments formed by coiled-coil-rich cytoskeletal proteins, such as keratin. Crescentin is a bacterial version of an intermediate filament and is required for the bent cell shape of Caulobacter crescentus.

Blebbing

The release of vesicles from the outer membrane of Gram-negative bacteria. Blebbing occurs during normal growth and is enhanced in certain mutants that are impaired in cell division.

Lysozyme

An antibacterial enzyme that is produced in animals, plants, fungi and even bacteria and is capable of lysing sensitive bacteria by hydrolysing the N-acetylmuramic acid–N-acetylglucosamine bonds in peptidoglycan chains.

Type VI secretion systems

(T6SSs). A recently discovered secretion apparatus that is widely distributed in Gram-negative bacteria. Some of its components are similar to phage injection systems. The T6SS punctures both eukaryotic and bacterial cells, often injecting toxic effector proteins into them.

Turgor

The osmotic pressure of a compartment (here, the bacterial cytoplasm) that is due to the lower activity of water.

D-amino acids

Rare chiral forms (mirror structures) of the abundant L-amino acids that build proteins. D-amino acids are present in peptidoglycan and in some non-ribosomally synthesized antibiotics.

Atomic force microscopy

(AFM). A microscopy technique that uses a cantilever tip to scan the surface of a probe, either in direct contact or in oscillation mode, to produce topography images with nanometre-scale resolution.

Total internal reflection fluorescence microscopy

(TIRF microscopy). A fluorescence microscopy technique that uses an evanescent wave to selectively excite a fluorophore in a small area of a specimen adjacent to a glass–water interface to reduce background fluorescence. This technique provides a superior axial resolution.

Photoactivated localization microscopy

(PALM). A super-resolution fluorescence microscopy technique based on the controlled activation and sampling of subsets of photoconvertible fluorescent molecules in the sample. This technique can achieve 10–20 nm resolution.

Solid-state NMR spectroscopy

NMR spectroscopy of insoluble polymers. The technique requires rapid spinning of the sample at a certain 'magic' angle. It provides information on the structural flexibility of a polymer and the interactions of chemical entities within it (for example, amino acids or sugars in peptidoglycan sacculi).

Förster resonance energy transfer

(FRET). A technique that detects and characterizes the interaction between two molecules coupled to two fluorophores, by measuring the excitation of one fluorophore by the light emitted from the other. A positive FRET signal indicates a distance of less than 10 nm between the fluorophores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Typas, A., Banzhaf, M., Gross, C. et al. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10, 123–136 (2012). https://doi.org/10.1038/nrmicro2677

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2677

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology