Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses

Key Points

  • Traditionally, it has been thought that the main function of the innate immune system is to combat pathogens. However, accumulating evidence supports the idea that the immune system also serves an important role in establishing and maintaining beneficial symbioses between the host and the microbiota.

  • Four model invertebrate animal systems that form stable, long-term associations with bacterial symbionts — the cnidarian Hydra spp., the bobtail squid, the medicinal leech and the pea aphid — highlight how the innate immune system shapes these symbioses. On the basis of studies using these models, we propose mechanisms by which symbionts and non-symbionts can be distinguished by these hosts.

  • Many of these interactions are mediated through symbiont-derived microorganism-associated molecular patterns (MAMPs) and host-derived pattern recognition receptors (PRRs), which lead to downstream host signalling events and the regulation of host immune effectors.

  • In several of the model systems, the cellular immune response, in the form of phagocytic haemocytes, plays an important part in mediating interactions with symbionts. In some invertebrates, these cells can distinguish between symbiotic and non-symbiotic bacteria, and some symbionts might also have mechanisms for avoiding phagocytosis.

  • Acellular, chemical effectors such as antimicrobial peptides and reactive oxygen species can also have important roles in determining the composition of the microbial community.

  • We propose three mechanisms by which invertebrate hosts can distinguish between symbionts and non-symbionts: reciprocal signalling involving MAMPs and PRRs; sequestration of symbionts to specialized organs, tissues and cells; and avoidance of integrating a MAMP response with a damage signal, which otherwise leads to a heightened immune response by the host.

Abstract

The innate immune system is present in all animals and is a crucial first line of defence against pathogens. However, animals also harbour large numbers of beneficial microorganisms that can be housed in the digestive tract, in specialized organs or on tissue surfaces. Although invertebrates lack conventional antibody-based immunity, they are capable of eliminating pathogens and, perhaps more importantly, discriminating them from other microorganisms. This Review examines the interactions between the innate immune systems of several model invertebrates and the symbionts of these organisms, and addresses the central question of how these long-lived and specific associations are established and maintained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model systems of invertebrate symbioses.
Figure 2: Proposed pathways of innate immune response activation in invertebrates.
Figure 3: Model for the establishment of symbiostasis in host–microorganism associations.

Similar content being viewed by others

References

  1. Relman, D. A. 'Til death do us part': coming to terms with symbiotic relationships. Forward. Nature Rev. Microbiol. 6, 721–724 (2008).

    Article  CAS  Google Scholar 

  2. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  Google Scholar 

  4. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  9. Silver, A. C. et al. Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data. PLoS ONE 6, e16751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, K. H. & Ruby, E. G. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J. Bacteriol. 176, 1985–1991 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Regmi, P. R., Metzler-Zebeli, B. U., Ganzle, M. G., van Kempen, T. A. & Zijlstra, R. T. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs. J. Nutr. 141, 1273–1280 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6, 121–131 (2008).

    Article  CAS  Google Scholar 

  15. Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Silver, A. C. et al. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc. Natl Acad. Sci. USA 104, 9481–9486 (2007). This study shows that a bacterial T3SS is required for both symbiotic competence and virulence in different animal hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    CAS  PubMed  Google Scholar 

  18. Nyholm, S. V., Stewart, J. J., Ruby, E. G. & McFall-Ngai, M. J. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 11, 483–493 (2009). This work finds that colonization of the squid light organ might contribute to immune tolerance of the symbiont V. fischeri.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McFall-Ngai, M., Nyholm, S. V. & Castillo, M. G. The role of the immune system in the initiation and persistence of the Euprymna scolopes—Vibrio fischeri symbiosis. Semin. Immunol. 22, 48–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Fraune, S. et al. In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc. Natl Acad. Sci. USA 107, 18067–18072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fava, F. & Danese, S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J. Gastroenterol. 17, 557–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wells, J. M., Loonen, L. M. & Karczewski, J. M. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. Int. J. Med. Microbiol. 300, 41–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Litman, G. W., Cannon, J. P. & Dishaw, L. J. Reconstructing immune phylogeny: new perspectives. Nature Rev. Immunol. 5, 866–879 (2005).

    Article  CAS  Google Scholar 

  25. Zhang, S. M., Adema, C. M., Kepler, T. B. & Loker, E. S. Diversification of Ig superfamily genes in an invertebrate. Science 305, 251–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Rodrigues, J., Brayner, F. A., Alves, L. C., Dixit, R. & Barillas-Mury, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329, 1353–1355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uematsu, S. & Fujimoto, K. The innate immune system in the intestine. Microbiol. Immunol. 54, 645–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Jarchum, I. & Pamer, E. G. Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol. 23, 353–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Royet, J., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nature Rev. Immunol. 11, 837–851 (2011).

    Article  CAS  Google Scholar 

  31. Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Medzhitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002). This paper highlights the concept of PAMPs and the importance of pattern recognition in innate immunity.

    Article  CAS  PubMed  Google Scholar 

  33. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl Acad. Sci. USA 98, 1883–1888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004). This article coins the term MAMP and shows that a bacterial toxin can be used as a signalling molecule to induce normal host development.

    Article  CAS  PubMed  Google Scholar 

  37. Leulier, F. & Lemaitre, B. Toll-like receptors -— taking an evolutionary approach. Nature Rev. Genet. 9, 165–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).

    Article  CAS  PubMed  Google Scholar 

  40. Engelmann, I. & Pujol, N. Innate immunity in C. elegans. Adv. Exp. Med. Biol. 708, 105–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss, B. L., Wang, J. & Aksoy, S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 9, e1000619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krasity, B. C., Troll, J. V., Weiss, J. P. & McFall-Ngai, M. J. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem. Soc. Trans. 39, 1039–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dowling, D. K. & Simmons, L. W. Reactive oxygen species as universal constraints in life-history evolution. Proc. Biol. Sci. 276, 1737–1745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunol. 6, 973–979 (2005).

    Article  CAS  Google Scholar 

  47. Fujita, T., Matsushita, M. & Endo, Y. The lectin-complement pathway – its role in innate immunity and evolution. Immunol. Rev. 198, 185–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Augustin, R., Fraune, S., Franzenburg, S. & Bosch, T. C. Where simplicity meets complexity: hydra, a model for host–microbe interactions. Adv. Exp. Med. Biol. 710, 71–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bosch, T. C. What hydra has to say about the role and origin of symbiotic interactions. Biol. Bull. 223, 78–84 (2012).

    Article  PubMed  Google Scholar 

  50. Galliot, B. Hydra, a fruitful model system for 270 years. Int. J. Dev. Biol. 56, 411–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254, 1491–1494 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid–Vibrio symbiosis. Nature Rev. Microbiol. 2, 632–642 (2004).

    Article  CAS  Google Scholar 

  53. Rader, B. A. & Nyholm, S. V. Host/microbe interactions revealed through “omics” in the symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri. Biol. Bull. 223, 103–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Nelson, M. & Graf, J. Bacterial symbioses of the medicinal leech Hirudo verbana. Gut Microbes 3, 322–331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Graf, J. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect. Immun. 67, 1–7 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Worthen, P. L., Gode, C. J. & Graf, J. Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl. Environ. Microbiol. 72, 4775–4781 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong, C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Cherry, S. & Silverman, N. Host-pathogen interactions in drosophila: new tricks from an old friend. Nature Immunol. 7, 911–917 (2006).

    Article  CAS  Google Scholar 

  60. Unterman, B. M., Baumann, P. & McLean, D. L. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 171, 2970–2974 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brinza, L. et al. Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. C. R. Biol. 332, 1034–1049 (2009).

    Article  PubMed  Google Scholar 

  62. Bosch, T. C. Understanding complex host-microbe interactions in hydra. Gut Microbes 3, 345–351 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Miller, D. J. et al. The innate immune repertoire in Cnidaria – ancestral complexity and stochastic gene loss. Genome Biol. 8, R59 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fraune, S. & Bosch, T. C. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc. Natl Acad. Sci. USA 104, 13146–13151 (2007). The results from this study suggest that Hydra spp. can actively determine the composition of their microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bosch, T. C. et al. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev. Comp. Immunol. 33, 559–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Koropatnick, T. A., Kimbell, J. R. & McFall-Ngai, M. J. Responses of host hemocytes during the initiation of the squid-vibrio symbiosis. Biol. Bull. 212, 29–39 (2007).

    Article  PubMed  Google Scholar 

  67. Nyholm, S. V. & McFall-Ngai, M. J. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195, 89–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Ford, L. A. Host defense mechanisms of cephalopods. Annu. Rev. Fish Dis. 2, 25–41 (1992).

    Article  Google Scholar 

  69. Beuerlein, K., Lohr, S., Westermann, B., Ruth, P. & Schipp, R. Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Tissue Cell 34, 390–396 (2002).

    Article  PubMed  Google Scholar 

  70. Collins, A. J., Schleicher, T. R., Rader, B. A. & Nyholm, S. V. Understanding the role of host hemocytes in a squid/Vibrio symbiosis using transcriptomics and proteomics. Front. Immunol. 3, 91 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Visick, K. L. & Ruby, E. G. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9, 632–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. McFall-Ngai, M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Marine Biol. 144, 1151–1155 (2004).

    Article  Google Scholar 

  74. Ruby, E. G. & Lee, K. H. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64, 805–812 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, K. H. & Ruby, E. G. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58, 942–947 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Troll, J. V. et al. Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environ. Microbiol. 12, 2190–2203 (2010).

    CAS  PubMed  Google Scholar 

  77. Goodson, M. S. et al. Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71, 6934–6946 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Troll, J. V. et al. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell. Microbiol. 11, 1114–1127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nyholm, S. V., Deplancke, B., Gaskins, H. R., Apicella, M. A. & McFall-Ngai, M. J. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68, 5113–5122 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nyholm, S. V. & McFall-Ngai, M. J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932–3937 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Adin, D. M., Engle, J. T., Goldman, W. E., McFall-Ngai, M. J. & Stabb, E. V. Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J. Bacteriol. 191, 2012–2022 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Goldman, W. E., Klapper, D. G. & Baseman, J. B. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 36, 782–794 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Melly, M. A., McGee, Z. A. & Rosenthal, R. S. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149, 378–386 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heath-Heckman, E. A. & McFall-Ngai, M. J. The occurrence of chitin in the hemocytes of invertebrates. Zoology (Jena) 114, 191–198 (2011).

    Article  Google Scholar 

  88. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Mathis, D. & Benoist, C. Microbiota and autoimmune disease: the hosted self. Cell Host Microbe 10, 297–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Wlodarska, M. & Finlay, B. B. Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol. 3, 100–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Weis, V. M., Small, A. L. & McFall-Ngai, M. J. A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna–Vibrio mutualism. Proc. Natl Acad. Sci. USA 93, 13683–13688 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. NO means 'yes' in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol. 6, 1139–1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Schleicher, T. R. & Nyholm, S. V. Characterizing the host and symbiont proteomes in the association between the bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS ONE 6, e25649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Small, A. L. & McFall-Ngai, M. J. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J. Cell Biochem. 72, 445–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Visick, K. L. & Ruby, E. G. The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J. Bacteriol. 180, 2087–2092 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y. & Ruby, E. G. The roles of NO in microbial symbioses. Cell. Microbiol. 13, 518–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Altura, M. A., Stabb, E., Goldman, W., Apicella, M. & McFall-Ngai, M. J. Attenuation of host NO production by MAMPs potentiates development of the host in the squid–vibrio symbiosis. Cell. Microbiol. 13, 527–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Castillo, M. G., Goodson, M. S. & McFall-Ngai, M. Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev. Comp. Immunol. 33, 69–76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujito, N. T., Sugimoto, S. & Nonaka, M. Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Dev. Comp. Immunol. 34, 775–784 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, H. et al. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Mol. Immunol. 44, 3492–3500 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Blandin, S. & Levashina, E. A. Thioester-containing proteins and insect immunity. Mol. Immunol. 40, 903–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kikuchi, Y. & Graf, J. Spatial and temporal population dynamics of a naturally occurring two-species microbial community inside the digestive tract of the medicinal leech. Appl. Environ. Microbiol. 73, 1984–1991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Graf, J. The effect of symbionts on the physiology of Hirudo medicinalis, the medicinal leech. Invertebr. Reprod. Dev. 41, 269–275 (2002).

    Article  Google Scholar 

  104. Silver, A. C. & Graf, J. Innate and procured immunity inside the digestive tract of the medicinal leech. Invertebrate Surv. J. 8, 173–178 (2011).

    Google Scholar 

  105. Sawyer, R. T. Leech Biology and Behavior (Clarendon Press, 1986).

    Google Scholar 

  106. Tasiemski, A. Antimicrobial peptides in annelids. Invertebrate Surv. J. 5, 75–82 (2008).

    Google Scholar 

  107. Macagno, E. R. et al. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 11, 407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Indergand, S. & Graf, J. Ingested blood contributes to the specificity of the symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech. Appl. Environ. Microbiol. 66, 4735–4741 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Silver, A. C., Rabinowitz, N., Küffer, S. & Graf, J. Identification of Aeromonas veronii genes required for colonization of the medicinal leech, Hirudo verbana. J. Bacteriol. 189, 6763–6722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sha, J. et al. Further characterization of a type III secretion system (T3SS) and of a new effector protein 3 from a clinical isolate of Aeromonas hydrophila — Part I. Microbiol. Pathog. 43, 127–146 (2007).

    Article  CAS  Google Scholar 

  111. Silver, A. C. & Graf, J. Prevalence of genes encoding the type three secretion system and the effectors AexT and AexU in the Aeromonas veronii group. DNA Cell Biol. 28, 383–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Burr, S. E., Stuber, K. & Frey, J. The ADP-ribosylating toxin, AexT, from Aeromonas salmonicida subsp. salmonicida is translocated via a type III secretion pathway. J. Bacteriol. 185, 6583–6591 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Burr, S. E., Wahli, T., Segner, H., Pugovkin, D. & Frey, J. Association of Type III secretion genes with virulence of Aeromonas salmonicida subsp. salmonicida. Dis. Aquat. Organ. 57, 167–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Bomar, L. G. J. Investigation into the physiologies of Aeromonas veronii in vitro and inside the digestive tract of the medicinal leech using RNA-seq. Biol. Bull. 223, 155–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schikorski, D. et al. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J. Immunol. 181, 1083–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Tasiemski, A. et al. Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J. Biol. Chem. 279, 30973–30982 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Tasiemski, A. et al. Proenkephalin A-derived peptides in invertebrate innate immune processes. Brain Res. Mol. Brain Res. 76, 237–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Baumann, P. et al. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2, RESEARCH0054 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Braendle, C. et al. Developmental origin and evolution of bacteriocytes in the aphi–Buchnera symbiosis. PLoS Biol. 1, e21 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nakabachi, A. et al. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc. Natl Acad. Sci. USA 102, 5477–5482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Douglas, A. E., Bouvaine, S. & Russell, R. R. How the insect immune system interacts with an obligate symbiotic bacterium. Proc. Biol. Sci. 278, 333–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Gerardo, N. M. et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 11, R21 (2010). This investigation shows that the pea aphid has a reduced innate immunity repertoire compared to other insects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schmitz, A. et al. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. PLoS ONE 7, e42114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Laughton, A. M., Garcia, J. R., Altincicek, B., Strand, M. R. & Gerardo, N. M. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 57, 830–839 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102, 16919–16926 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scarborough, C. L., Ferrari, J. & Godfray, H. C. Aphid protected from pathogen by endosymbiont. Science 310, 1781 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Glaser, R. L. & Meola, M. A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5, e11977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Reid, R. G. B. Biological Emergences: Evolution by Natural Experiment (MIT Press, 2007).

    Book  Google Scholar 

  133. Murray, J. D. Invasion by invitation: rhizobial infection in legumes. Mol. Plant Microbe Interact. 24, 631–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Graf, J., Kikuchi, Y. & Rio, R. V. Leeches and their microbiota: naturally simple symbiosis models. Trends Microbiol. 14, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Login, F. H. et al. Antimicrobial peptides keep insect endosymbionts under control. Science 334, 362–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J. Clin. Nutr. 69, 1035S–1045S (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Mason, K. L. et al. From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2, e00065–e00011 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Daskin, J. H. & Alford, R. A. Context-dependent symbioses and their potential roles in wildlife diseases. Proc. Biol. Sci. 279, 1457–1465 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002). This paper highlights the danger model and the importance of DAMPs in the immune response.

    Article  CAS  PubMed  Google Scholar 

  142. Ryu, J. H., Ha, E. M. & Lee, W. J. Innate immunity and gut–microbe mutualism in Drosophila. Dev. Comp. Immunol. 34, 369–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Ottaviani, E., Malagoli, D. & Franceschi, C. Common evolutionary origin of the immune and neuroendocrine systems: from morphological and functional evidence to in silico approaches. Trends Immunol. 28, 497–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nature Rev. Microbiol. 6, 752–762 (2008).

    Article  CAS  Google Scholar 

  145. De Tomaso, A. W. et al. Isolation and characterization of a protochordate histocompatibility locus. Nature 438, 454–459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for helpful suggestions. Research in the S.V.N. laboratory was supported by the US National Science Foundation (NSF) (grant IOS-0958006) and the University of Connecticut Research Foundation. Research in the J.G. laboratory was supported by the NSF (Career Award MCB 0448052), the US National Institutes of Health (grant RO1 GM095390) and the University of Connecticut Research Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Symbiont

As used in this Review: a microorganism that forms a specific, stable and beneficial association with a particular host. Although this is now a commonly accepted definition, the original definition of symbionts, by Anton de Bary, included pathogenic, commensal and mutualistic symbionts.

Pattern recognition receptors

Eukaryotic proteins that bind to microorganism-associated molecular patterns, activating downstream signalling and, ultimately, innate immunity effector responses. Examples include Toll-like receptors, peptidoglycan recognition proteins and Gram-negative bacteria-binding proteins.

Peptidoglycan

The polymer that makes up the bacterial cell wall, and consists of β-(1-4)-linked N-acetylglucosamine and N-acetylmuramic acid linked to small peptide chains.

Lipopolysaccharide

A major component of the outer membrane of Gram-negative bacteria. It is composed of an O antigen, a core oligosaccharide and lipid A.

Outer-membrane proteins

Proteins that are common to the outer membrane of Gram-negative bacteria.

Flagellins

Bacterial major flagellar proteins.

Type III secretion system

A needle-like secretion system that allows Gram-negative bacteria to inject toxins directly into eukaryotic cells.

Microorganism-associated molecular patterns

Molecular motifs that are unique to microorganisms (both pathogens and non-pathogens) and are often recognized by components of the innate immune system.

Toll-like receptors

(TLRs). A diverse group of evolutionarily conserved pattern recognition receptors that are characterized by extracellular leucine-rich repeats and a cytoplasmic Toll–interleukin-1 receptor motif. Binding of microorganism-associated molecular patterns to TLRs often leads to downstream signalling via the nuclear factor-κB pathway or related pathways and results in the regulation of immune effectors.

Peptidoglycan recognition proteins

Eukaryotic proteins that can bind and sometimes degrade bacterial peptidoglycan, and are expressed in various locations within a cell.

Endoymbioses

As used in this Review: associations between hosts and intracellular symbionts (endosymbionts). These symbionts fall into two groups: obligate or primary symbionts, which are always found associated with the host, and secondary symbionts, which are not always present.

Complement system

A humoral component of the innate immune system; the complement pathway leads to the opsonization of microorganisms. There are three types of complement pathway: classical, alternative and lectin.

Nuclear factor-κB pathway

An evolutionarily conserved signalling cascade involving multiple protein complexes that control the transcription of immunity genes.

Damage-associated molecular pattern

A host-derived non-microbial factor that is released following tissue damage or necrosis and can activate the immune system in a similar way to microorganism-associated molecular patterns.

Toll–interleukin-1 receptor domain

A cytosolic domain that is common to a diverse group of receptors, including Toll and Toll-like receptors, and is found in proteins of the basal Hydra spp. discussed in this Review.

Expressed sequence tag

(EST). A cDNA sequence that has been obtained from a reverse-transcribed mRNA.

Immune deficiency pathway

An immune pathway that is found in most insects and responds to bacteria via peptidoglycan recognition proteins binding to diaminopimelic acid-containing peptidoglycan. Subsequent signalling pathways can lead to AMP production.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyholm, S., Graf, J. Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 10, 815–827 (2012). https://doi.org/10.1038/nrmicro2894

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2894

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology