Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa

Key Points

  • Probiotics are defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host” and have been studied by the scientific community for more than a century. The vast majority of marketed probiotics belong to the genera Lactobacillus and Bifidobacterium. Although the scientific evidence for the health-promoting effects of probiotics in specific challenged populations is solid (for example, the prevention of antibiotic-associated and acute infectious diarrhoea), the effectiveness of these organisms in other areas, such as the treatment of inflammatory bowel disease, is less established.

  • Several modes of action have been proposed for probiotics, including the strengthening of intestinal epithelial barrier function by stimulation of mucin secretion or enhancement of tight junction function, the clearance of pathogens by competitive binding to receptors presented by epithelial cells, and the synthesis of antimicrobial substances such as bacteriocins. Another key mode of action by which probiotics are proposed to exert their beneficial effects is through modulation of the host immune system in the intestinal mucosa.

  • The intestinal mucosa contains several specialized cell types involved in immunomodulation, and these cells express a range of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon exposure to microorganism-associated molecular patterns (MAMPs), PRRs respond by activating associated adaptor proteins that are linked to nuclear factor-κB and mitogen-activated protein kinase signalling cascades, resulting in modulated expression of response genes, including genes encoding cytokines, chemokines and antimicrobial peptides.

  • Multiple conserved, polymeric MAMPs are located in the bacterial cell envelope, including peptidoglycan, capsular polysaccharide, wall teichoic acids and lipoteichoic acids (LTAs). Several MAMP–PRR interactions are well documented. However, the strain- and species-specific probiotic effects that are observed hinder the investigation into general probiotic MAMPs and the effects that they induce. Obtaining insight into strain specificity will require comparative structural analyses of the complex MAMP backbones and their modifications.

  • Strain-specific proteinaceous MAMPs have also been identified, further adding to the complexity of intestinal host–microorganism interactions. Overall, the molecular analysis of MAMPs has led to the perception that their functioning is influenced by the cellular context in which they are expressed, and the overall MAMP profile will lead to an integrated response by the host to maintain or regain intestinal homeostasis.

  • Determination of the changes in the duodenal transcriptomes of healthy volunteers after the consumption of four different lactobacilli revealed species-specific host immunomodulation via distinct signalling pathways, pinpointing the importance of strain selection for specific probiotic applications. Moreover, a remarkably large intrapersonal distance between the transcriptome profiles was observed in comparison to the interpersonal transcriptional changes induced by consumption of different probiotic strains. These observations suggest that, within the concept of the 'bandwidth of human health' that we outline here, different molecular solutions may underlie intestinal homeostasis in healthy individuals, a fact that is likely to affect the physiological consequences of a healthy person's responses to functional foods such as probiotics.

Abstract

Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of host defence against and tolerance to intestinal microorganisms.
Figure 2: Microorganism-associated molecular patterns of three Lactobacillus species for which the reciprocal receptors have been identified.
Figure 3: Probiotic molecular interactions of three lactobacilli and of Gram-positive bacteria in general with intestinal epithelial cells and dendritic cells.
Figure 4: Person-to-person variation of the baseline mucosal molecular make-up and the responses to three probiotics.
Figure 5: The molecular 'bandwidth of human health' concept.

Similar content being viewed by others

References

  1. Food and Agriculture Organization–WHO. Guidelines for the evaluation of probiotics in food. (WHO, London, Ontario, 2002).

  2. Kleerebezem, M. et al. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34, 199–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Gordon, S. Elie Metchnikoff: father of natural immunity. Eur. J. Immunol. 38, 3257–3264 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Metchnikoff, É. The Prolongation of Life: Optimistic Studies (ed. Mitchell, P. C.) (Heinemann, London, 1907).

    Google Scholar 

  5. Tissier, H. Des infections intestinales par la méthode de la flore bactérienne de l'intestin. Crit. Rev. Soc. Biol. 60, 359–361 (1906) (in French).

    Google Scholar 

  6. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Rev. Microbiol. 8, 171–184 (2010).

    Article  CAS  Google Scholar 

  7. Marco, M. L., Pavan, S. & Kleerebezem, M. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 17, 204–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Do, V. T., Baird, B. G. & Kockler, D. R. Probiotics for maintaining remission of ulcerative colitis in adults. Ann. Pharmacother. 44, 565–571 (2010).

    Article  PubMed  Google Scholar 

  9. Trebichavsky, I., Splichal, I., Rada, V. & Splichalova, A. Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr. Rev. 68, 459–464 (2010).

    Article  PubMed  Google Scholar 

  10. Alfaleh, K., Anabrees, J. & Bassler, D. Probiotics reduce the risk of necrotizing enterocolitis in preterm infants: a meta-analysis. Neonatology 97, 93–99 (2010).

    Article  PubMed  Google Scholar 

  11. Deshpande, G., Rao, S., Patole, S. & Bulsara, M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125, 921–930 (2010).

    Article  PubMed  Google Scholar 

  12. Kale-Pradhan, P. B., Jassal, H. K. & Wilhelm, S. M. Role of Lactobacillus in the prevention of antibiotic-associated diarrhea: a meta-analysis. Pharmacotherapy 30, 119–126 (2010).

    Article  PubMed  Google Scholar 

  13. Holubar, S. D., Cima, R. R., Sandborn, W. J. & Pardi, D. S. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst. Rev. 2010, CD001176 (2010).

    Google Scholar 

  14. Boyle, R. J., Bath-Hextall, F. J., Leonardi-Bee, J., Murrell, D. F. & Tang, M. L. Probiotics for the treatment of eczema: a systematic review. Clin. Exp. Allergy 39, 1117–1127 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rioux, K. P. & Fedorak, R. N. Probiotics in the treatment of inflammatory bowel disease. J. Clin. Gastroenterol. 40, 260–263 (2006).

    Article  PubMed  Google Scholar 

  16. Moayyedi, P. et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59, 325–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L. & Gershwin, M. E. Probiotics and immunity. J. Gastroenterol. 44, 26–46 (2009).

    Article  PubMed  Google Scholar 

  18. Pelto, L., Isolauri, E., Lilius, E. M., Nuutila, J. & Salminen, S. Probiotic bacteria downregulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin. Exp. Allergy 28, 1474–1479 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Roessler, A. et al. The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin. Exp. Allergy 38, 93–102 (2008).

    CAS  PubMed  Google Scholar 

  20. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corr, S. C., Hill, C. & Gahan, C. G. Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv. Food Nutr. Res. 56, 1–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Mack, D. R., Ahrne, S., Hyde, L., Wei, S. & Hollingsworth, M. A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52, 827–833 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlee, M. et al. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin. Exp. Immunol. 151, 528–535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlee, M. et al. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75, 2399–2407 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan, F. et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562–575 (2007). The first study to pinpoint the role in probiotic activity for specific proteinaceous components of a well-characterized probiotic strain.

    Article  CAS  PubMed  Google Scholar 

  26. Yan, F. & Polk, D. B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem. 277, 50959–50965 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, R. C. et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 10, 316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karczewski, J. et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G851–G859 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Seth, A., Yan, F., Polk, D. B. & Rao, R. K. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1060–G1069 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. O'Flaherty, S., Saulnier, D. M., Pot, B. & Versalovic, J. How can probiotics and prebiotics impact mucosal immunity? Gut Microbes 1, 293–300 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Booijink, C. C. et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ. Microbiol. 12, 3213–3227 (2010).

    Article  CAS  Google Scholar 

  32. Booijink, C. C., Zoetendal, E. G., Kleerebezem, M. & de Vos, W. M. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol. 2, 285–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl Acad. Sci. USA 107, 18132–18137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Hara, A. M. et al. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 118, 202–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balda, M. S. & Matter, K. Tight junctions at a glance. J. Cell Sci. 121, 3677–3682 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. McCracken, V. J. & Lorenz, R. G. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell. Microbiol. 3, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Rev. Microbiol. 9, 356–368 (2011).

    Article  CAS  Google Scholar 

  40. Salzman, N. H. Microbiota-immune system interaction: an uneasy alliance. Curr. Opin. Microbiol. 14, 99–105 (2011).

    Article  PubMed  Google Scholar 

  41. Wells, J. M., Rossi, O., Meijerink, M. & van Baarlen, P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4607–4614 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Liew, F. Y. TH1 and TH2 cells: a historical perspective. Nature Rev. Immunol. 2, 55–60 (2002).

    Article  CAS  Google Scholar 

  43. Barnes, M. J. & Powrie, F. Regulatory T cells reinforce intestinal homeostasis. Immunity 31, 401–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 1, 460–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rescigno, M. Intestinal dendritic cells. Adv. Immunol. 107, 109–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  Google Scholar 

  47. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  Google Scholar 

  48. Sansonetti, P. J. & Medzhitov, R. Learning tolerance while fighting ignorance. Cell 138, 416–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Chung, H. & Kasper, D. L. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr. Opin. Immunol. 22, 455–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  Google Scholar 

  52. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). A comprehensive study which shows that a non-culturable Clostridium -related species of segmented filamentous bacteria is able to promote differentiation and maturation of mouse T H 1, T H 17 and T Reg cells to similar extents as a complete mouse microbiota.

    Article  CAS  PubMed  Google Scholar 

  53. Sartor, R. B. Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proc. Natl Acad. Sci. USA 105, 16413–16414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reid, G. et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Rev. Microbiol. 9, 27–38 (2011).

    Article  CAS  Google Scholar 

  55. Asong, J., Wolfert, M. A., Maiti, K. K., Miller, D. & Boons, G. J. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J. Biol. Chem. 284, 8643–8653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Dziarski, R. & Gupta, D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun. 73, 5212–5216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5, 1000–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Volz, T. et al. Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent co-stimulators of the innate immune system exclusively in the presence of TLR signals. FASEB J. 24, 4089–4102 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Macho Fernandez, E. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050–1059 (2011). An elegant invesitgation that provides insight at the molecular level into why peptidoglycan derived from two Lactobacillus spp. is differentially recognized by NLRP2 and, consequently, leads to different efficacies of these species in the treatment of collitis in a mouse model.

    Article  CAS  PubMed  Google Scholar 

  61. Delcour, J., Ferain, T., Deghorain, M., Palumbo, E. & Hols, P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 159–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Foligne, B. et al. A key role of dendritic cells in probiotic functionality. PLoS ONE 2, e313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeuthen, L. H., Fink, L. N. & Frokiaer, H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124, 489–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xia, G., Kohler, T. & Peschel, A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300, 148–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005). This work provides the first direct evidence, using both in vitro and in vivo models, that a bacterial cell wall compound (LTA) can modulate the host immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, H. G. et al. Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumour necrosis factor-alpha production. J. Microbiol. Biotechnol. 18, 1191–1196 (2008).

    CAS  PubMed  Google Scholar 

  67. Matsuguchi, T. et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumour necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10, 259–266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mohamadzadeh, M. et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4623–4630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saber, R. et al. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals. Immunotherapy 3, 337–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Hirose, Y. et al. Lipoteichoic acids on Lactobacillus plantarum cell surfaces correlate with induction of interleukin-12p40 production. Microbiol. Immunol. 54, 143–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Perea Velez, M. et al. Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 3595–3604 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Kaji, R., Kiyoshima-Shibata, J., Nagaoka, M., Nanno, M. & Shida, K. Bacterial teichoic acids reverse predominant IL-12 production induced by certain Lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J. Immunol. 184, 3505–3513 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Ryu, Y. H. et al. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int. Immunopharmacol. 9, 127–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Jang, K. S., Baik, J. E., Han, S. H., Chung, D. K. & Kim, B. G. Multi-spectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem. Biophys. Res. Commun. 407, 823–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Claes, I. J. et al. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin. Exp. Immunol. 162, 306–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Q. et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J. Exp. Med. 203, 2853–2863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rockel, C., Hartung, T. & Hermann, C. Different Staphylococcus aureus whole bacteria mutated in putative pro-inflammatory membrane components have similar cytokine inducing activity. Immunobiology 216, 316–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Yasuda, E., Serata, M. & Sako, T. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl. Environ. Microbiol. 74, 4746–4755 (2008).

    Article  CAS  Google Scholar 

  79. Hafez, M. et al. The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect. Immun. 77, 2995–3003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lebeer, S. et al. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl. Environ. Microbiol. 75, 3554–3563 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lebeer, S., Claes, I. J., Verhoeven, T. L., Vanderleyden, J. & De Keersmaecker, S. C. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4, 368–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pilobello, K. T. & Mahal, L. K. Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11, 300–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Xia, G. et al. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J. Biol. Chem. 285, 13405–13415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vollmer, W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32, 287–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Tomita, S. et al. Comparison of components and synthesis genes of cell wall teichoic acid among Lactobacillus plantarum strains. Biosci. Biotechnol. Biochem. 74, 928–933 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Francius, G. et al. Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2, 1921–1929 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Marco, M. L. et al. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4, 1481–1484 (2010). The first report on the in situ transcriptome of a Lactobacillus sp. in the human intestinal tract.

    Article  CAS  PubMed  Google Scholar 

  88. Andre, G. et al. Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillu s plantarum. ACS Chem. Biol. 6, 366–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Atilano, M. L. et al. Teichoic acids are temporal and spatial regulators of peptidoglycan crosslinking in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 107, 18991–18996 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ventura, M. et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature Rev. Microbiol. 7, 61–71 (2009).

    Article  CAS  Google Scholar 

  91. Smits, H. H. et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Konstantinov, S. R. et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl Acad. Sci. USA 105, 19474–19479 (2008). The first study to identify the ligand of a pivotal immature-DC receptor that is involved in immunomodulation by a probiotic Lactobacillus strain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johnson-Henry, K. C., Hagen, K. E., Gordonpour, M., Tompkins, T. A. & Sherman, P. M. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell. Microbiol. 9, 356–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007). An elegantly designed in vivo investigation that robustly proves the probiotic role of Lactobacillus spp. bacteriocins in the prevention or attenuation of intestinal pathogen infection ( Listeria monocytogenes ) in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Molenaar, D. et al. Exploring Lactobacillus plantarum genome diversity by using microarrays. J. Bacteriol. 187, 6119–6127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siezen, R. J. et al. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12, 758–773 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. van Haemert, S. et al. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol. 10, 293 (2010).

    Article  CAS  Google Scholar 

  98. Meijerink, M. et al. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS ONE 5, e10632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bron, P. A., Grangette, C., Mercenier, A., de Vos, W. M. & Kleerebezem, M. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol. 186, 5721–5729 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marco, M. L., Bongers, R. S., de Vos, W. M. & Kleerebezem, M. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl. Environ. Microbiol. 73, 124–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Marco, M. L. et al. Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ. Microbiol. 11, 2747–2757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pretzer, G. et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187, 6128–6136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gross, G. et al. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. FEMS Immunol. Med. Microbiol. 54, 215–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Bauerl, C., Perez-Martinez, G., Yan, F., Polk, D. B. & Monedero, V. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J. Mol. Microbiol. Biotechnol. 19, 231–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan, F. et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J. Clin. Invest. 121, 2242–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abu-Qarn, M., Eichler, J. & Sharon, N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18, 544–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Cario, E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54, 1182–1193 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127, 224–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). This article shows that gut commensal bacteria are recognized by TLRs expressed in the intestinal mucosa, and that this recognition plays a crucial part in the maintenance of intestinal epithelial homeostasis during host–microbiota interactions.

    Article  CAS  PubMed  Google Scholar 

  110. Resta-Lenert, S. & Barrett, K. E. Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130, 731–746 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Ulluwishewa, D. et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141, 769–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Mangell, P. et al. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Dig. Dis. Sci. 47, 511–516 (2002).

    Article  PubMed  Google Scholar 

  113. Qin, H., Zhang, Z., Hang, X. & Jiang, Y. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol. 9, 63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Troost, F. J. et al. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics 9, 374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mao, Y. et al. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111, 334–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. White, J. S. et al. The probiotic bacterium Lactobacillus plantarum species 299 reduces intestinal permeability in experimental biliary obstruction. Lett. Appl. Microbiol. 42, 19–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Christensen, H. R., Frokiaer, H. & Pestka, J. J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168, 171–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Drakes, M., Blanchard, T. & Czinn, S. Bacterial probiotic modulation of dendritic cells. Infect. Immun. 72, 3299–3309 (2004).

    Article  CAS  Google Scholar 

  119. Gately, M. K. et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 16, 495–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Mohamadzadeh, M. et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc. Natl Acad. Sci. USA 102, 2880–2885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Foligne, B. et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J. Gastroenterol. 13, 236–243 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Latvala, S. et al. Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells. World J. Gastroenterol. 14, 5570–5583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Niers, L. E. et al. Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin. Exp. Immunol. 149, 344–352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vissers, Y. M. et al. Lactobacillus strains differentially modulate cytokine production by hPBMC from pollen-allergic patients. FEMS Immunol. Med. Microbiol. 61, 28–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Peran, L. et al. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J. Gastroenterol. 11, 5185–5192 (2005).

    PubMed  PubMed Central  Google Scholar 

  126. Zoumpopoulou, G. et al. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulphonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int. J. Food Microbiol. 121, 18–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Roselli, M. et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm. Bowel Dis. 15, 1526–1536 (2009).

    Article  PubMed  Google Scholar 

  128. Kwon, H. K. et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl Acad. Sci. USA 107, 2159–2164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mileti, E., Matteoli, G., Iliev, I. D. & Rescigno, M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 4, e7056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Di Caro, S. et al. The European experience with double-balloon enteroscopy: indications, methodology, safety, and clinical impact. Gastrointest. Endosc. 62, 545–550 (2005).

    Article  PubMed  Google Scholar 

  131. van Baarlen, P. et al. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl Acad. Sci. USA 106, 2371–2376 (2009). Pioneering work that addresses the transcriptional response of the healthy human duodenal mucosa to the oral intake of probiotic-containing products, highlighting the differential responses to different preparations of the same probiotic strain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van Baarlen, P. et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4562–4569 (2011). An in vivo study showing that, in healthy humans, there are differential duodenal transcriptome responses to three commercial probiotic strains; this study also highlights human individuality in baseline transcriptome patterns.

    Article  CAS  PubMed  Google Scholar 

  133. Kalliomaki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001). This article convincingly shows that consumption of L. rhamnosus str. GG is effective in the prevention of early atopic disease (eczema, rhinitis or asthma) in children at high risk.

    Article  CAS  PubMed  Google Scholar 

  134. Kalliomaki, M., Salminen, S., Poussa, T., Arvilommi, H. & Isolauri, E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361, 1869–1871 (2003).

    Article  PubMed  Google Scholar 

  135. Kalliomaki, M. & Isolauri, E. Role of intestinal flora in the development of allergy. Curr. Opin. Allergy Clin. Immunol. 3, 15–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Schultz, M. et al. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J. Dairy Res. 70, 165–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Gilliland, S. E. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72, 2483–2494 (1989).

    Article  CAS  PubMed  Google Scholar 

  138. Gill, H. S., Rutherfurd, K. J., Prasad, J. & Gopal, P. K. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Paturi, G., Phillips, M. & Kailasapathy, K. Effect of probiotic strains Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 on systemic immune functions and bacterial translocation in mice. J. Food Prot. 71, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Weiss, G. et al. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology 131, 268–281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bloksma, N., de Heer, E., van Dijk, H. & Willers, J. M. Adjuvanticity of lactobacilli. I. Differential effects of viable and killed bacteria. Clin. Exp. Immunol. 37, 367–375 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bloksma, N., Van Dijk, H., Korst, P. & Willers, J. M. Cellular and humoral adjuvant activity of mistletoe extract. Immunobiology 156, 309–318 (1979).

    CAS  PubMed  Google Scholar 

  143. Heinzerling, L., von Baehr, V., Liebenthal, C., von Baehr, R. & Volk, H. D. Immunologic effector mechanisms of a standardized mistletoe extract on the function of human monocytes and lymphocytes in vitro, ex vivo, and in vivo. J. Clin. Immunol. 26, 347–359 (2006).

    Article  PubMed  Google Scholar 

  144. Karlsson, H., Hessle, C. & Rudin, A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect. Immun. 70, 6688–6696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Karlsson, H., Larsson, P., Wold, A. E. & Rudin, A. Pattern of cytokine responses to gram-positive and gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells. Infect. Immun. 72, 2671–2678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mane, J. et al. A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects: a dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp. 26, 228–235 (2011).

    CAS  PubMed  Google Scholar 

  147. Bouwman, F. G. et al. 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting. BMC Med. Genomics 4, 24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rimbach, G. et al. Dietary isoflavones in the prevention of cardiovascular disease: a molecular perspective. Food Chem. Toxicol. 46, 1308–1319 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, F. et al. A critical role for Stat3 signalling in immune tolerance. Immunity 19, 425–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stritesky, G. L. et al. The transcription factor STAT3 is required for T helper 2 cell development. Immunity 34, 39–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. de Roos, N. M. & Katan, M. B. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71, 405–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Szajewska, H., Ruszczynski, M. & Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J. Pediatr. 149, 367–372 (2006).

    Article  PubMed  Google Scholar 

  155. Muller, M. & Kersten, S. Nutrigenomics: goals and strategies. Nature Rev. Genet. 4, 315–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). A landmark paper that defines the first catalogue of 3.3 million non-redundant genes of the human large-intestinal microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011). This article describes a metagenomics-based assessment of the functional composition of the human intestinal microbiome, revealing three distinct host–microorganism symbiotic states, termed enterotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Canani, R. B. et al. Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ 335, 340 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Snel, J. et al. Strain-specific immunomodulatory effects of Lactobacillus plantarum strains on birch-pollen-allergic subjects out of season. Clin. Exp. Allergy 41, 232–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Walter, J. et al. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69, 2044–2051 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Denou, E. et al. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J. Bacteriol. 189, 8109–8119 (2007). The first study to investigate a Lactobacillus sp. in situ transcriptome in the mouse intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Willing, B. P., Antunes, L. C., Keeney, K. M., Ferreira, R. B. & Finlay, B. B. Harvesting the biological potential of the human gut microbiome. Bioessays 33, 414–418 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Kunisawa, J. & Kiyono, H. Peaceful mutualism in the gut: revealing key commensal bacteria for the creation and maintenance of immunological homeostasis. Cell Host Microbe 9, 83–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Nelson, K. E. et al. A catalogue of reference genomes from the human microbiome. Science 328, 994–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Gloux, K. et al. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. 73, 3734–3737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lakhdari, O. et al. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut. PLoS ONE 5, e13092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Corcoran, B. M., Stanton, C., Fitzgerald, G. & Ross, R. P. Life under stress: the probiotic stress response and how it may be manipulated. Curr. Pharm. Des. 14, 1382–1399 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Bron, P. A. & Kleerebezem, M. Engineering lactic acid bacteria for increased industrial functionality. Bioeng. Bugs 2, 1–8 (2011).

    Article  Google Scholar 

  173. Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Kleerebezem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Host-Microbe Interactomics at Wageningen University

Kluyver Centre for Genomics of Industrial Fermentation

Laboratory of Microbiology at Wageningen University

NIZO Food Research

Top Institute Food and Nutrition

Glossary

Necrotizing enterocolitis

An acute inflammatory condition that is seen primarily in premature infants and results in parts of the bowel dying off.

Tight junction

An area in which the cell membranes from two adjacent vertebrate cells are closely and tightly associated, forming a barrier that is impermeable to liquids and particulate compounds.

Follicle centres

Small, spherical groups of cells; these spheres contain a cavity or centre, in which immune cells (B cells and T cells) proliferate and differentiate.

Microfold cells

(M cells). A cell type that is found in the follicle-associated epithelium of Peyer's patches. M cells have the ability to take up antigens, including bacteria, directly from the small intestinal lumen and to deliver these antigens to the immune cells that are located directly underneath the M cells.

Peptidoglycan

An essential cell wall polymer composed of alternating residues of β-1-4-linked N-acetylmuramic acid and N-acetylglucosamine crosslinked by pentapeptide bridges containing immunomodulatory fragments such as diaminopimelic acid.

Lipoteichoic acid

A D-alanyl- and glycosyl-substituted polyglycerolphosphate polymer that is anchored in the bacterial cytoplasmic membrane through glycolipids.

Nutrigenomic approaches

The application of high-throughput genomic tools in nutrition research to decipher how nutrients affect the production and action of specific gene products and how these in turn affect the response to nutrients.

Immunological adjuvant

An agent that modifies the effect of another agent (often a drug or vaccine) but has few, if any, direct effects when given by itself.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bron, P., van Baarlen, P. & Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10, 66–78 (2012). https://doi.org/10.1038/nrmicro2690

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2690

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology