Small (20–30 nt) RNAs are associated with members of the Argonaute (Ago) family, which comprise two subfamilies: Ago and Piwi. Based on their biogenesis mechanism and the type of Argonaute proteins that they associate with, at least three classes of small RNAs can be distinguished in eukaryotes: microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs). miRNAs control mRNA stability and translation by targeting cognate mRNAs. Endo-siRNAs suppress repetitive genes by cleaving their transcripts. Some piRNAs mediate RNA cleavage or heterochromatin formation of transposons, although the functions of most piRNAs are still unknown.

Possible mechanisms of action

- **miRNA cleavage** (miRNAs and endo-siRNAs)
 - **Ago**
 - Ago2
 - **Piwi**
 - PIWI
 - **Transposons and piRNA clusters**
 - RNA cleavage
 - **MILI (PIWIL2 in humans)**

- **Transitional regression** (piRNA)
 - **AGO7**
 - **AGO6**
 - **AGO4**

- **Deadenylation and miRNA degradation** (miRNA)
 - **AGO1–4**

- **Heterochromatin formation** (RNA methylation and/or histone modification)
 - **AGO1–4**
 - **AGO2**

Components of the RISC complex at Alcam

Alcam is a diffuse chromomeric body of all the very last and most up-to-date antibodies to components of the RISC complex. It is biochemically involved in the number of CHIP-grade and batch tested antibodies, enabling the research community to deconstruct epigenetic pathways. Two of our very best RISC antibodies:

- **Ago2** (ab13502)
- **AGO1** (ab42018)

All our antibodies to the components of the RISC complex are highly characterized and our datasheets provide a library of relevant information. Further at www.abcam.com/RISC

Contact information

Dr. V. Narry Kim, Department of Biomedical Sciences, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.

For further reading, see www.nature.com/nrem/for-/664x46844

Linker review article

Table 1: Eukaryotic small RNAs are associated with Argonaute-family proteins

<table>
<thead>
<tr>
<th>Family</th>
<th>Ago-family protein</th>
<th>Class of small RNA*</th>
<th>Length of small RNA</th>
<th>Origin of small RNA</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>Ago</td>
<td>AGO1–4</td>
<td>miRNA</td>
<td>21–23 nt</td>
<td>miRNA genes</td>
</tr>
<tr>
<td></td>
<td>Piwi</td>
<td>PIW1 (in humans)</td>
<td>Piwi-pRNA</td>
<td>23–27 nt</td>
<td>piRNA clusters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIW2 (in humans)</td>
<td>Piwi-pRNA</td>
<td>23–27 nt</td>
<td>piRNA clusters</td>
</tr>
</tbody>
</table>

Shdominant-membrane

<table>
<thead>
<tr>
<th>Ago</th>
<th>AGO1–4</th>
<th>miRNA</th>
<th>21–23 nt</th>
<th>miRNA genes</th>
<th>Translational repression, miRNA degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piwi</td>
<td>PIW1 (in humans)</td>
<td>endo-siRNA</td>
<td>21–23 nt</td>
<td>Intergenic repetitive genes, pseudogenes and endo-siRNA clusters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIW2 (in humans)</td>
<td>si-pRNA</td>
<td>22–24 nt</td>
<td>Small interfering RNA (siRNA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIW3 (in humans)</td>
<td>micro-pRNA</td>
<td>21–24 nt</td>
<td>Micro RNA (miRNA)</td>
<td></td>
</tr>
</tbody>
</table>

Schizophrenia

| Ago |AGO7–4 | miRNA | 21–23 nt | miRNA genes | Translational repression, miRNA degradation |

Abbreviations

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), 2014-2015, Japan.

*Small RNAs that are the main partners of a given Ago protein are listed. "siRNA," in a class, is representative of all class types, whereas endo-siRNAs and piRNAs are expressed abundantly in germline cells and contribute to germ cell development.

For further reading, see www.nature.com/nrem/for-/664x46844

Linker review article