Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer as an overhealing wound: an old hypothesis revisited

Key Points

  • A series of clinical and preclinical findings suggest a relationship between wound repair and cancer: malignant tumours often develop at sites of chronic injury and permanent tissue damage through chronic inflammation is a major risk factor for the development of cancer.

  • Recent studies have highlighted important parallels between wound healing and cancer at the molecular and cellular level. For example, microarray analyses revealed strong similarities in the gene-expression profile of wounds and carcinomas. However, important differences were also observed, which might explain the altered metabolism, impaired differentiation capacity and invasive growth of tumour cells.

  • The wound-healing process occurs in three overlapping phases: inflammation, new tissue formation and tissue remodelling. This review summarizes the cellular and molecular events that occur during these phases and the similarities and differences to cancer.

  • The presence of a fibrin clot is a hallmark of early wounds and cancers and it initiates a healing response. This response is transient and self-limiting in wounds, but it becomes chronic in cancer.

  • Stromal cells in wounds and tumours, including fibroblasts and/or myofibroblasts, endothelial cells and inflammatory cells, are important regulators of migration and proliferation of normal epithelial cells in wounds and of malignant epithelial cells in tumours. The factors that are responsible for the stromal–epithelial cross-talk are similar in wounds and tumours and include cytokines or growth factors, matrix molecules and proteinases.

  • Most cancer therapies also inhibit the wound-healing process, but recent examples suggest that inhibition of tumour growth can be achieved without affecting the tissue-repair process.

Abstract

What is the relationship between the wound-healing process and the development of cancer? Malignant tumours often develop at sites of chronic injury, and tissue injury has an important role in the pathogenesis of malignant disease, with chronic inflammation being the most important risk factor. The development and functional characterization of genetically modified mice that lack or overexpress genes that are involved in repair, combined with gene-expression analysis in wounds and tumours, have highlighted remarkable similarities between wound repair and cancer. However, a few crucial differences were also observed, which could account for the altered metabolism, impaired differentiation capacity and invasive growth of malignant tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different phases of skin wound repair.
Figure 2: Cellular parallels between a tumour and a skin wound.
Figure 3: Fibrin deposition in wounds and tumours.
Figure 4: Angiogenesis in healing skin wounds.
Figure 5: Myofibroblast differentiation in healing skin wounds.

Similar content being viewed by others

References

  1. Reed, B. R. & Clark, R. A. Cutaneous tissue repair: practical implications of current knowledge. II. J. Am. Acad. Dermatol. 13, 919–941 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Virchow, R. Virchow, R. Aetiologie der neoplastischen Geschwulste/Pathogenie der neoplastischen Geschwulste. (Verlag von August Hirschwald, Berlin, Germany, 1863).

    Google Scholar 

  3. Dunham, L. J. Cancer in man at site of prior benign lesion of skin or mucous membrane: a review. Cancer Res. 32, 1359–1374 (1972).

    CAS  PubMed  Google Scholar 

  4. Haddow, A. Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing? Adv. Cancer Res. 16, 181–234 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986). In this paper, H. Dvorak formulated his famous hypothesis that tumours are wounds that do not heal, and he describes the underlying cellular basis.

    Article  CAS  PubMed  Google Scholar 

  6. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985). The first demonstration that tumours preferentially grow at sites of wounding in retrovirus-infected chickens.

    Article  CAS  PubMed  Google Scholar 

  7. Martins-Green, M., Boudreau, N. & Bissell, M. J. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54, 4334–4341 (1994).

    CAS  PubMed  Google Scholar 

  8. Schuh, A. C., Keating, S. J., Monteclaro, F. S., Vogt, P. K. & Breitman, M. L. Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. Nature 346, 756–760 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Drew, A. F., Liu, H., Davidson, J. M., Daugherty, C. C. & Degen, J. L. Wound-healing defects in mice lacking fibrinogen. Blood 97, 3691–3698 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Sakai, T. et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nature Med. 7, 324–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Weller, K., Foitzik, K., Paus, R., Syska, W. & Maurer, M. Mast cells are required for normal healing of skin wounds in mice. FASEB J. 20, 2366–2368 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Leibovich, S. J. & Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78, 71–100 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005). Summarizes the positive and negative effects of inflammation on the wound-repair process.

    Article  CAS  PubMed  Google Scholar 

  14. Eming, S. A., Krieg, T. & Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 127, 514–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, P. et al. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Curr. Biol. 13, 1122–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Dovi, J. V., He, L. K. & DiPietro, L. A. Accelerated wound closure in neutrophil-depleted mice. J. Leukoc. Biol. 73, 448–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kumin, A. et al. Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J. Cell Biol. 179, 747–760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  19. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005). References18 and 19 summarize the current knowledge on the role of inflammation in cancer development and progression.

    Article  CAS  PubMed  Google Scholar 

  20. Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. The yin-yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 222, 155–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006). Summarizes the different functions of macrophages in cancer that are also relevant for the wound-healing process.

    Article  CAS  PubMed  Google Scholar 

  22. Eming, S. A. et al. Accelerated wound closure in mice deficient for interleukin-10. Am. J. Pathol. 170, 188–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nature Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  24. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. & Bronte, V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev. 222, 162–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Med. 13, 828–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nature Rev. Cancer 7, 139–147 (2007).

    Article  CAS  Google Scholar 

  27. Muller-Decker, K., Hirschner, W., Marks, F. & Furstenberger, G. The effects of cyclooxygenase isozyme inhibition on incisional wound healing in mouse skin. J. Invest. Dermatol. 119, 1189–1195 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Subbaramaiah, K. & Dannenberg, A. J. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 24, 96–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Braun, S. et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol. Cell. Biol. 22, 5492–5505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, X. & Kensler, T. Nrf2 as a target for cancer chemoprevention. Mutat. Res. 591, 93–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Grose, R. et al. A crucial role of β 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Romer, J. et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nature Med. 2, 287–292 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  37. Florin, L., Maas-Szabowski, N., Werner, S., Szabowski, A. & Angel, P. Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts. J. Cell Sci. 118, 1981–1989 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Avniel, S. et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J. Invest. Dermatol. 126, 468–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005). Describes the important role of carcinoma-associated fibroblasts for tumour growth and the underlying mechanisms of action.

    Article  CAS  PubMed  Google Scholar 

  41. Chmielowiec, J. et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 177, 151–162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Benvenuti, S. & Comoglio, P. M. The MET receptor tyrosine kinase in invasion and metastasis. J. Cell Physiol. 213, 316–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Sibilia, M. et al. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 75, 770–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Sano, S., Chan, K. S. & Digiovanni, J. Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases. J. Dermatol. Sci. 50, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Amendt, C., Schirmacher, P., Weber, H. & Blessing, M. Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wakefield, L. M. & Roberts, A. B. TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Werner, S. et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266, 819–822 (1994). The first study to use transgenic mice to study wound repair.

    Article  CAS  PubMed  Google Scholar 

  50. Grose, R. et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 26, 1268–1278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tse, J. C. & Kalluri, R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J. Cell Biochem. 101, 816–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ting, S. B. et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308, 411–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Tepper, O. M. et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105, 1068–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971). In this paper, J. Folkman formulates the important hypothesis that angiogenesis is a prerequisite for tumour growth.

    Article  CAS  PubMed  Google Scholar 

  59. Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T. & Alitalo, K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156, 1499–1504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saharinen, P., Tammela, T., Karkkainen, M. J. & Alitalo, K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25, 387–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Liersch, R. & Detmar, M. Lymphangiogenesis in development and disease. J. Thromb. Haemost. 98, 304–310 (2007).

    Article  CAS  Google Scholar 

  62. Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 29, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rossiter, H. et al. Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res. 64, 3508–3516 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hong, Y. K. et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the α1β1 and α2β1 integrins. FASEB J. 18, 1111–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Larcher, F., Murillas, R., Bolontrade, M., Conti, C. J. & Jorcano, J. L. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17, 303–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Cianfarani, F. et al. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am. J. Pathol. 169, 1167–1182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marcellini, M. et al. Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am. J. Pathol. 169, 643–654 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saaristo, A. et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am. J. Pathol. 169, 1080–1087 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirakawa, S. et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Streit, M. et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J. 19, 3272–3282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Streit, M. et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am. J. Pathol. 155, 441–452 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luster, A. D., Cardiff, R. D., MacLean, J. A., Crowe, K. & Granstein, R. D. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc. Assoc. Am. Physicians 110, 183–196 (1998).

    CAS  PubMed  Google Scholar 

  75. Arenberg, D. A. et al. Interferon-γ-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med. 184, 981–992 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Bloch, W. et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J. 14, 2373–2376 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Lange-Asschenfeldt, B. et al. The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J. Invest. Dermatol. 117, 1036–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kamba, T. & McDonald, D. M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 96, 1788–1795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Opalenik, S. R. & Davidson, J. M. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 19, 1561–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Werner, S. & Smola, H. Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol. 11, 143–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Radisky, D. C., Kenny, P. A. & Bissell, M. J. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J. Cell Biochem. 101, 830–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Direkze, N. C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Cooper, L., Johnson, C., Burslem, F. & Martin, P. Wound healing and inflammation genes revealed by array analysis of 'macrophageless' PU.1 null mice. Genome Biol. 6, R5 (2005).

    Article  PubMed  Google Scholar 

  87. Li, W. et al. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 26, 1221–1233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for hsp90 α in cancer cell invasiveness. Nature Cell Biol. 6, 507–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Ostman, A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 15, 275–286 (2004).

    Article  PubMed  CAS  Google Scholar 

  90. Gao, Z. et al. Deletion of the PDGFR-β gene affects key fibroblast functions important for wound healing. J. Biol. Chem. 280, 9375–9389 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Pietras, K. et al. STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin. Cancer Res. 9, 3779–3787 (2003).

    CAS  PubMed  Google Scholar 

  92. Rajkumar, V. S. et al. Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am. J. Pathol. 169, 2254–2265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Distler, J. H. et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 56, 311–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Steed, D. L. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast. Reconstr Surg. 117, S143–S149 (2006).

    Article  CAS  Google Scholar 

  95. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  Google Scholar 

  96. Shah, M., Foreman, D. M. & Ferguson, M. W. Neutralisation of TGF-β 1 and TGF-β 2 or exogenous addition of TGF-β 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108, 985–1002 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Cheon, S. S. et al. β-catenin regulates wound size and mediates the effect of TGF-β in cutaneous healing. FASEB J. 20, 692–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cheon, S. S. et al. β-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl Acad. Sci. USA 99, 6973–6978 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alman, B. A., Li, C., Pajerski, M. E., Diaz-Cano, S. & Wolfe, H. J. Increased β-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am. J. Pathol. 151, 329–334 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Stover, D. G., Bierie, B. & Moses, H. L. A delicate balance: TGF-β and the tumor microenvironment. J. Cell Biochem. 101, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Mori, R., Shaw, T. J. & Martin, P. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J. Exp. Med. 205, 43–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. El-Tanani, M. K. et al. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev. 17, 463–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004). Reports on the parallels in the gene-expression pattern between malignant tumours and serum-treated fibroblasts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Riss, J. et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 66, 7216–7224 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Pedersen, T. X. et al. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene 22, 3964–3976 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Thorey, I. S. et al. Transgenic mice reveal novel activities of growth hormone in wound repair, angiogenesis, and myofibroblast differentiation. J. Biol. Chem. 279, 26674–26684 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Detmar, ETH Zürich, Switzerland, P. Martin, University of Bristol, UK, and A. Knuth, University of Zürich, Switzerland, for helpful suggestions and critical comments on the manuscript; to U. Scheier for help with the figures and the references; and to I. Thorey for providing the micrographs shown in Figure 4 and 5. Work in the laboratory of S.W. is supported by the ETH Zürich, the Swiss National Science Foundation (grant 3100A0-109340/1), Oncosuisse (grant OCS-02017-02-2007), and the European Union (grant Ulcertherapy). M.S. is supported by an EMBO postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Werner.

Supplementary information

41580_2008_BFnrm2455_MOESM2_ESM.pdf

Supplementary information S1 (table) | Approved cancer drugs that target growth factors or their receptors: Effects on cancer and wound healing (PDF 161 kb)

Related links

Related links

DATABASES

OMIM

recessive dystrophic epidermolysis bullosa

FURTHER INFORMATION

Sabine Werner's homepage

Glossary

Scar

A connective tissue replacement following the wounding of the dermis.

Keloid

An overgrowth of scar tissue beyond the original wound edge.

Stroma

A connective tissue component of an organ (or tumour), which includes fibroblasts, blood and lymphatic vessels, inflammatory cells and extracellular matrix.

Granulation tissue

A highly vascularized and cell-rich tissue that replaces the fibrin clot in a skin wound.

Sarcoma

A cancer that arises from mesenchymal cells.

Warburg effect

The observation that most cancer cells predominantly produce energy by anaerobic glycolysis, which results in lactate formation.

Keratinocyte

The epithelial cell of the skin.

Epidermis

The outer, protective, non-vascular layer of the skin that covers the dermis.

Re-epithelialization

Regeneration of the injured epidermis in a skin wound.

Dermis

The connective tissue layer of the skin that is located below the epidermis.

Complement

A group of more than 20 serum proteins, some of which can be serially activated and participate in a cascade that results in cell lysis.

Reactive oxygen species

(ROS). Molecules or ions that are formed by the incomplete one-electron reduction of oxygen. ROS include singlet oxygen, superoxides, peroxides, hydroxyl radicals and hypochlorous acid.

PU.1

A member of the ETS family of transcription factors that is required for the development of multiple haematopoietic lineages.

Peroxiredoxins

A family of six thiol proteins that detoxify hydrogen peroxide, lipid hydroperoxides and — in the case of peroxiredoxin-6 — also peroxinitrite.

Angiogenesis

The sprouting of new vessels from pre-existing vessels.

Matrix metalloproteinases

(MMPs). Zinc-dependent endopeptidases that cleave different extracellular matrix proteins and also growth factors, chemokines, cell-surface receptors and other proteins.

Myeloid-derived suppressor cells

(MDSCs). Heterogeneous mixture of immature myeloid cells that are potent inhibitors of anti-tumour immunity. In mice they are generally defined by the markers CD11b and GR1.

Cyclooxygenases

Enzymes responsible for the formation of prostaglandins, prostacyclins and thromboxanes.

NRF2

A Leu-zipper transcription factor that activates the expression of a battery of cytoprotective genes.

Lamellipodium

A flattened projection from the cell surface, generally associated with cell migration.

Epithelial–mesenchymal transition

(EMT). A developmental programme in which epithelial cells lose cell–cell adhesion, acquire a fibroblast-like morphology and increase their motility.

Carcinoma

A cancer that arises from epithelial cells.

STAT3

A protein that transduces the signal from activated cytokine or growth-factor receptors to the nucleus.

Psoriasis

An inflammatory skin disease that is associated with keratinocyte hyperproliferation and abnormal differentiation.

SMAD3

A signalling protein that is activated by the type I transforming growth factor-β receptor, and which transduces the signal from the plasma membrane to the nucleus.

Pericyte

A mesenchymal cell that is associated with the wall of small blood vessels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, M., Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9, 628–638 (2008). https://doi.org/10.1038/nrm2455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing