Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulation of TNFR1 and CD95 signalling by receptor compartmentalization

Abstract

The death receptors tumour-necrosis factor receptor-1 (TNFR1) and CD95 (also known as FAS and APO-1) transduce signals that promote cell death by apoptosis. However, these receptors are also capable of inducing anti-apoptotic signals through the activation of the transcription factor nuclear factor-κB (NF-κB) or through activation of the proliferative mitogen-activated protein kinase (MAPK) cascade. Recent findings reveal a role for receptor internalization and endosomal trafficking in selectively transmitting the signals that lead either to apoptosis or to the survival of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compartmentalization of TNFR1 signalling.
Figure 2: CD95 compartmentalization.

Similar content being viewed by others

References

  1. McPherson, P. S., Kay, B. K. & Hussain, N. K. Signaling on the endocytic pathway. Traffic 2001. 2, 375–384 (2001).

    CAS  Google Scholar 

  2. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  Google Scholar 

  3. Teis, D. & Huber, L. A. The odd couple: signal transduction and endocytosis. Cell Mol. Life Sci. 60, 2020–2033 (2003).

    Article  CAS  Google Scholar 

  4. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).

    Article  CAS  Google Scholar 

  5. Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  CAS  Google Scholar 

  6. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

  7. Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  8. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  9. Scaffidi, C., Medema, J. P., Krammer, P. H. & Peter, M. E. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J. Biol. Chem. 272, 26953–26958 (1997).

    Article  CAS  Google Scholar 

  10. Medema, J. P. et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804 (1997).

    Article  CAS  Google Scholar 

  11. Yeh, W. C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    Article  CAS  Google Scholar 

  12. Lee, S. Y. et al. TRAF2 is essential for JNK but not NF-κB activation and regulates lymphocyte proliferation and survival. Immunity 7, 703–713 (1997).

    Article  CAS  Google Scholar 

  13. Grech, A. P. et al. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-κB activation in mature B cells. Immunity 21, 629–642 (2004).

    Article  CAS  Google Scholar 

  14. Harper, N., Hughes, M., MacFarlane, M. & Cohen, G. M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem. 278, 25534–25541 (2003).

    Article  CAS  Google Scholar 

  15. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  16. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  Google Scholar 

  17. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death. Differ. 10, 45–65 (2003).

    Article  CAS  Google Scholar 

  18. Mosselmans, R., Hepburn, A., Dumont, J. E., Fiers, W. & Galand, P. Endocytic pathway of recombinant murine tumor necrosis factor in L-929 cells. J. Immunol. 141, 3096–3100 (1988).

    CAS  PubMed  Google Scholar 

  19. Bradley, J. R., Johnson, D. R. & Pober, J. S. Four different classes of inhibitors of receptor-mediated endocytosis decrease tumor necrosis factor-induced gene expression in human endothelial cells. J. Immunol. 150, 5544–5555 (1993).

    CAS  PubMed  Google Scholar 

  20. Schütze, S. et al. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J. Biol. Chem. 274, 10203–10212 (1999).

    Article  Google Scholar 

  21. Schneider-Brachert, W. et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415–428 (2004).

    Article  CAS  Google Scholar 

  22. Schneider-Brachert, W. et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J. Clin. Invest. 116, 2901–2913 (2006).

    Article  CAS  Google Scholar 

  23. Kull, F. C. Jr. & Cuatrecasas, P. Possible requirement of internalization in the mechanism of in vitro cytotoxicity in tumor necrosis serum. Cancer Res. 41, 4885–4890 (1981).

    CAS  PubMed  Google Scholar 

  24. Watanabe, N. et al. Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J. Biol. Chem. 263, 10262–10266 (1988).

    CAS  PubMed  Google Scholar 

  25. Pastorino, J. G. et al. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J. Biol. Chem. 271, 29792–29798 (1996).

    Article  CAS  Google Scholar 

  26. Wiegmann, K., Schütze, S., Machleidt, T., Witte, D. & Krönke, M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005–1015 (1994).

    Article  CAS  Google Scholar 

  27. Lin, T. et al. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J. Biol. Chem. 275, 8657–8663 (2000).

    Article  CAS  Google Scholar 

  28. Morales, A., Lee, H., Goni, F. M., Kolesnick, R. & Fernandez-Checa, J. C. Sphingolipids and cell death. Apoptosis 12, 923–939 (2007).

    Article  CAS  Google Scholar 

  29. Manthey, C. L. & Schuchman, E. H. Acid sphingomyelinase-derived ceramide is not required for inflammatory cytokine signalling in murine macrophages. Cytokine 10, 654–661 (1998).

    Article  CAS  Google Scholar 

  30. Nix, M. & Stoffel, W. Perturbation of membrane microdomains reduces mitogenic signaling and increases susceptibility to apoptosis after T cell receptor stimulation. Cell Death. Differ. 7, 413–424 (2000).

    Article  CAS  Google Scholar 

  31. Adam, D., Wiegmann, K., Adam-Klages, S., Ruff, A. & Krönke, M. A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway. J. Biol. Chem. 271, 14617–14622 (1996).

    Article  CAS  Google Scholar 

  32. Adam-Klages, S. et al. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86, 937–947 (1996).

    Article  CAS  Google Scholar 

  33. Boone, E., Vandevoorde, V., De Wilde, G. & Haegeman, G. Activation of p42/p44 mitogen-activated protein kinases (MAPK) and p38 MAPK by tumor necrosis factor (TNF) is mediated through the death domain of the 55-kDa TNF receptor. FEBS Lett. 441, 275–280 (1998).

    Article  CAS  Google Scholar 

  34. Schwandner, R., Wiegmann, K., Bernardo, K., Kreder, D. & Krönke, M. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J. Biol. Chem. 273, 5916–5922 (1998).

    Article  CAS  Google Scholar 

  35. Wiegmann, K. et al. Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J. Biol. Chem. 274, 5267–5270 (1999).

    Article  CAS  Google Scholar 

  36. Monney, L. et al. Role of an acidic compartment in tumor-necrosis-factor-α-induced production of ceramide, activation of caspase-3 and apoptosis. Eur. J. Biochem. 251, 295–303 (1998).

    Article  CAS  Google Scholar 

  37. Garcia-Ruiz, C. et al. Defective TNF-α-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J. Clin. Invest. 111, 197–208 (2003).

    Article  CAS  Google Scholar 

  38. Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death. Differ. 11, 550–563 (2004).

    Article  CAS  Google Scholar 

  39. Cifone, M. G. et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J. Exp. Med. 180, 1547–1552 (1994).

    Article  CAS  Google Scholar 

  40. Herr, I., Wilhelm, D., Bohler, T., Angel, P. & Debatin, K. M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 16, 6200–6208 (1997).

    Article  CAS  Google Scholar 

  41. De Maria, R., Rippo, M. R., Schuchman, E. H. & Testi, R. Acidic sphingomyelinase (ASM) is necessary for Fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J. Exp. Med. 187, 897–902 (1998).

    Article  CAS  Google Scholar 

  42. Brenner, B. et al. Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death. Differ. 5, 29–37 (1998).

    Article  CAS  Google Scholar 

  43. Dumitru, C. A. & Gulbins, E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene. 25, 5612–5625 (2006).

    Article  CAS  Google Scholar 

  44. Thon, L., Mathieu, S., Kabelitz, D. & Adam, D. The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp. Cell Res. 312, 3808–3821 (2006).

    Article  CAS  Google Scholar 

  45. Woo, C. H. et al. Inhibition of receptor internalization attenuates the TNFα-induced ROS generation in non-phagocytic cells. Biochem. Biophys. Res. Commun. 351, 972–978 (2006).

    Article  CAS  Google Scholar 

  46. Heinrich, M. et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263 (1999).

    Article  CAS  Google Scholar 

  47. Chen, G. & Goeddel, D. V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  Google Scholar 

  48. Neumeyer, J. et al. TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Exp. Cell Res. 312, 2142–2153 (2006).

    Article  CAS  Google Scholar 

  49. Schütze, S. & Tchikov, V. in Programmed Cell Death Part A Volume 442 Ch. 5 (eds Khosravi-Far, R. et al.) (Academic Press, in the press).

  50. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    Article  CAS  Google Scholar 

  51. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  52. Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505–3513 (2006).

    Article  CAS  Google Scholar 

  53. Jin, Z. & El Deiry, W. S. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell. Biol. 26, 8136–8148 (2006).

    Article  CAS  Google Scholar 

  54. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  55. Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429 (2000).

    Article  CAS  Google Scholar 

  56. Liao, W. et al. CARP-2 is an endosome-associated ubiquitin protein ligase for RIP and regulates TNF-induced NF-B activation. Current Biology 18, 641–649 (2008).

    Article  CAS  Google Scholar 

  57. Li-Weber, M. & Krammer, P. H. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin. Immunol. 15, 145–157 (2003).

    Article  CAS  Google Scholar 

  58. Peter, M. E. et al. The CD95 receptor: apoptosis revisited. Cell 129, 447–450 (2007).

    Article  CAS  Google Scholar 

  59. Algeciras-Schimnich, A. et al. Molecular ordering of the initial signaling events of CD95. Mol. Cell. Biol. 22, 207–220 (2002).

    Article  CAS  Google Scholar 

  60. Feig, C., Tchikov, V., Schütze, S. & Peter, M. E. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26, 221–231 (2007).

    Article  CAS  Google Scholar 

  61. Siegel, R. M. et al. SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J. Cell Biol. 167, 735–744 (2004).

    Article  CAS  Google Scholar 

  62. Lee, K. H. et al. The role of receptor internalization in CD95 signaling. EMBO J. 24, 1009–1023 (2006).

    Article  Google Scholar 

  63. Eramo, A. et al. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur. J. Immunol. 34, 1930–1940 (2004).

    Article  CAS  Google Scholar 

  64. Chakrabandhu, K. et al. Palmitoylation is required for efficient Fas cell death signaling. EMBO J. 26, 209–220 (2007).

    Article  CAS  Google Scholar 

  65. Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 19, 5123–5134 (2000).

    Article  CAS  Google Scholar 

  66. Koncz, G., Kerekes, K., Chakrabandhu, K. & Hueber, A. O. Regulating Vav1 phosphorylation by the SHP-1 tyrosine phosphatase is a fine-tuning mechanism for the negative regulation of DISC formation and Fas-mediated cell death signaling. Cell Death. Differ. 15, 494–503 (2007).

    Article  Google Scholar 

  67. Barnhart, B. C. et al. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 23, 3175–3185 (2004).

    Article  CAS  Google Scholar 

  68. Ahn, J. H. et al. Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-κB-dependent gene expression. J. Biol. Chem. 276, 47100–47106 (2001).

    Article  CAS  Google Scholar 

  69. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol. 10, 640–648 (2000).

    Article  CAS  Google Scholar 

  70. Golks, A., Brenner, D., Krammer, P. H. & Lavrik, I. N. The c-FLIP-NH2 terminus (p22-FLIP) induces NF-κB activation. J. Exp. Med. 203, 1295–1305 (2006).

    Article  CAS  Google Scholar 

  71. Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    Article  CAS  Google Scholar 

  72. Austin, C. D. et al. Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl Acad. Sci. USA. 103, 10283–10288 (2006).

    Article  CAS  Google Scholar 

  73. Kohlhaas, S. L., Craxton, A., Sun, X. M., Pinkoski, M. J. & Cohen, G. M. Receptor-mediated endocytosis is not required for TRAIL-induced apoptosis. J. Biol. Chem. 282, 12831–12841 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) SCHU 733/7-1, SCHU733/8-1, SCHU733/9-1and SFB 415, project A11 given to S.S. and FOR 876, TP1 given to W.S.-B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schütze.

Related links

Related links

DATABASES

Interpro

SH2

FURTHER INFORMATION

Stefan Schütze's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9, 655–662 (2008). https://doi.org/10.1038/nrm2430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2430

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing