Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Extra-chromosomal elements and the evolution of cellular DNA replication machineries

Abstract

DNA replication is fundamental to the propagation of cellular life. Remarkably, the bacterial replication machinery is distinct from that used by archaea and eukaryotes. In this article, we discuss the role that lateral gene transfer by extra-chromosomal elements might have had in shaping the replication machinery and even modulating the manner in which host cellular genomes are replicated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tree of life.
Figure 2: Models for the replication dichotomy.
Figure 3: The diversity of archaeal MCMs.

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088 (1977).

    Article  CAS  Google Scholar 

  2. Leipe, D., Aravind, L. & Koonin, E. Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401 (1999).

    Article  CAS  Google Scholar 

  3. Edgell, D. & Doolittle, W. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

    Article  CAS  Google Scholar 

  4. Erzberger, J. P., Pirruccello, M. M. & Berger, J. M. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 21, 4763–4773 (2002).

    Article  CAS  Google Scholar 

  5. Liu, J. Y. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell 6, 637–648 (2000).

    Article  CAS  Google Scholar 

  6. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher order classification of AAA plus ATPases. J. Struct. Biol. 146, 11–31 (2004).

    Article  CAS  Google Scholar 

  7. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA plus proteins. Ann. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  Google Scholar 

  8. Indiani, C. & O'Donnell, M. The replication clamp-loading machine at work in the three domains of life. Nature Rev. Mol. Cell Biol. 7, 751–761 (2006).

    Article  CAS  Google Scholar 

  9. Aravind, L., Leipe, D. D. & Koonin, E. V. Toprim — a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26, 4205–4213 (1998).

    Article  CAS  Google Scholar 

  10. Lao-Sirieix, S. H., Pellegrini, L. & Bell, S. D. The promiscuous primase. Trends Genet. 21, 568–572 (2005).

    Article  CAS  Google Scholar 

  11. Iyer, L. M., Koonin, E. V., Leipe, D. D. & Aravind, L. Origin and evolution of the archaeo–eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res. 33, 3875–3896 (2005).

    Article  CAS  Google Scholar 

  12. Braithwaite, D. K. & Ito, J. Compilation, alignment, and phylogenetic-relationships of DNA-polymerases. Nucleic Acids Res. 21, 787–802 (1993).

    Article  CAS  Google Scholar 

  13. Bailey, S., Wing, R. A. & Steitz, T. A. The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell 126, 893–904 (2006).

    Article  CAS  Google Scholar 

  14. Costa, A. & Onesti, S. The MCM complex: (just) a replicative helicase? Biochem. Soc. Trans. 36, 136–140 (2008).

    Article  CAS  Google Scholar 

  15. Tanaka, S. et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332 (2007).

    Article  CAS  Google Scholar 

  16. Zegerman, P. & Diffley, J. F. X. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007).

    Article  CAS  Google Scholar 

  17. Woese, C. R. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    Article  CAS  Google Scholar 

  18. Forterre, P. Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33, 457–465 (1999).

    Article  CAS  Google Scholar 

  19. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci. USA 103, 3669–3674 (2006).

    Article  CAS  Google Scholar 

  20. Benson, S. D., Bamford, J. K. H., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

    Article  CAS  Google Scholar 

  21. Abrescia, N. G. A. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74 (2004).

    Article  CAS  Google Scholar 

  22. Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA 102, 18944–18949 (2005).

    Article  CAS  Google Scholar 

  23. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient Virus World and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  Google Scholar 

  24. Bernander, R., Dasgupta, S. & Nordstrom, K. The Escherichia coli cell cycle and the plasmid R1 replication cycle in the absence of the DnaA protein. Cell 64, 1145–1153 (1991).

    Article  CAS  Google Scholar 

  25. Koppes, L. J. H. Nonrandom F-plasmid replication in Escherichia coli K-12. J. Bacteriol. 174, 2121–2123 (1992).

    Article  CAS  Google Scholar 

  26. Filee, J., Forterre, P. & Laurent, J. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Res. Microbiol. 154, 237–243 (2003).

    Article  CAS  Google Scholar 

  27. Filee, J., Forterre, P., Sen-Lin, T. & Laurent, J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54, 763–773 (2002).

    Article  CAS  Google Scholar 

  28. Cermakian, N. et al. On the evolution of the single-subunit RNA polymerases. J. Mol. Evol. 45, 671–681 (1997).

    Article  CAS  Google Scholar 

  29. McGeoch, A. T. & Bell, S. D. Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome. Cell 120, 167–168 (2005).

    Article  CAS  Google Scholar 

  30. Ivanova, N. et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87–91 (2003).

    Article  CAS  Google Scholar 

  31. Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000).

    Article  CAS  Google Scholar 

  32. Robinson, N. P. et al. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116, 25–38 (2004).

    Article  CAS  Google Scholar 

  33. Robinson, N. P. & Bell, S. D. Extrachromosomal element capture and the evolution of multiple DNA replication origins in archaeal chromosomes. Proc. Natl Acad. Sci. USA 104, 5806–5811 (2007).

    Article  CAS  Google Scholar 

  34. Robinson, N. P., Blood, K. A., McCallum, S. A., Edwards, P. A. W. & Bell, S. D. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J. 26, 816–824 (2007).

    Article  CAS  Google Scholar 

  35. Norais, C. et al. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet. 3, e77 (2007).

    Article  Google Scholar 

  36. Lundgren, M., Andersson, A., Chen, L. M., Nilsson, P. & Bernander, R. Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc. Natl Acad. Sci. USA 101, 7046–7051 (2004).

    Article  CAS  Google Scholar 

  37. Giraldo, R. & Diaz-Orejas, R. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p). Proc. Natl Acad. Sci. USA 98, 4938–4943 (2001).

    Article  CAS  Google Scholar 

  38. Bernander, R. & Poplawski, A. Cell cycle characteristics of thermophilic archaea. J. Bacteriol. 179, 4963–4969 (1997).

    Article  CAS  Google Scholar 

  39. Barry, E. R. & Bell, S. D. DNA replication in the Archaea. Microbiol. Mol. Biol. Rev. 70, 876–887 (2006).

    Article  CAS  Google Scholar 

  40. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Ann. Rev. Biochem. 71, 333–374 (2002).

    Article  CAS  Google Scholar 

  41. Chen, Y. H. et al. Biochemical and mutational analyses of a unique clamp loader complex in the archaeon Methanosarcina acetivorans. J. Biol. Chem. 280, 41852–41863 (2005).

    Article  CAS  Google Scholar 

  42. Greve, B. et al. Novel RepA–MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. Archaea 1, 319–325 (2005).

    Article  CAS  Google Scholar 

  43. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  Google Scholar 

  44. Baliga, N. S. et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genet. Res. 14, 2221–2234 (2004).

    Article  CAS  Google Scholar 

  45. McGeoch, A. T., Trakselis, M. A., Laskey, R. A. & Bell, S. D. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nature Struct. Mol. Biol. 12, 756–762 (2005).

    Article  CAS  Google Scholar 

  46. Moreau, M. J., McGeoch, A. T., Lowe, A. R., Itzhaki, L. S. & Bell, S. D. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol. Cell 28, 304–314 (2007).

    Article  CAS  Google Scholar 

  47. Slesarev, A. I. et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl Acad. Sci. USA 99, 4644–4649 (2002).

    Article  CAS  Google Scholar 

  48. Woese, C. R. Interpreting the universal phylogenetic tree. Proc. Natl Acad. Sci. USA 97, 8392–8396 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of S.D.B is funded by the Wellcome Trust and the Edward Penley Abraham Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Bell.

Related links

Related links

FURTHER INFORMATION

Stephen D. Bell's homepage

Comprehensive Microbial Rresource

LBMGE Genomes DataBase

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGeoch, A., Bell, S. Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat Rev Mol Cell Biol 9, 569–574 (2008). https://doi.org/10.1038/nrm2426

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing