Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design principles of biochemical oscillators

Key Points

  • Many physiological behaviours of cells are repeated periodically in time, such as hormone secretion, second messenger signalling, cell-division cycles and circadian rhythms.

  • Oscillatory behaviour is a systems-level property of the interactions of genes, proteins and metabolites in the cell.

  • All biochemical oscillators are characterized by negative feedback with time delay.

  • Time delay can be due to a chain of intermediates between the 'cause' and 'effect' of the negative-feedback loop or to a positive-feedback loop in the network.

  • For a biochemical reaction network to oscillate, the kinetics of the reactions must be sufficiently nonlinear and their timescales must be properly balanced, in quantitative terms that are predicted by theoretical analysis.

  • These conditions are satisfied by various specific network topologies that provide the basis for a classification of biochemical oscillators.

Abstract

Cellular rhythms are generated by complex interactions among genes, proteins and metabolites. They are used to control every aspect of cell physiology, from signalling, motility and development to growth, division and death. We consider specific examples of oscillatory processes and discuss four general requirements for biochemical oscillations: negative feedback, time delay, sufficient 'nonlinearity' of the reaction kinetics and proper balancing of the timescales of opposing chemical reactions. Positive feedback is one mechanism to delay the negative-feedback signal. Biological oscillators can be classified according to the topology of the positive- and negative-feedback loops in the underlying regulatory mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-delayed negative-feedback oscillator.
Figure 2: Multi-component negative-feedback oscillator.
Figure 3: Hysteresis-driven negative-feedback oscillator.
Figure 4: Sources of nonlinearity.
Figure 5: A classification scheme for biochemical oscillators.
Figure 6: Chaotic oscillators.

Similar content being viewed by others

References

  1. Pye, K. & Chance, B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc. Natl Acad. Sci. USA 55, 888–894 (1966).

    Article  CAS  Google Scholar 

  2. Hess, B. & Boiteux, A. Oscillatory phenomena in biochemistry. Annu. Rev. Biochem. 40, 237–258 (1971).

    Article  CAS  Google Scholar 

  3. Gerisch, G., Fromm, H., Huesgen, A. & Wick, U. Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature 255, 547–549 (1975).

    Article  CAS  Google Scholar 

  4. Olsen, L. F. & Degn, H. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta 523, 321–334 (1978).

    Article  CAS  Google Scholar 

  5. Olsen, L. F. & Degn, H. Chaos in an enzyme reaction. Nature 267, 177–178 (1977).

    Article  CAS  Google Scholar 

  6. Higgins, J. Theory of oscillating reactions. Ind. Eng. Chem. 59, 19–62 (1967). An early but still useful review on biochemical oscillators with clear explanations of the underlying theory.

    Article  Google Scholar 

  7. Prigogine, I., Lefever, R., Goldbeter, A. & Herschkowitz-Kaufman, M. Symmetry breaking instabilities in biological systems. Nature 223, 913–916 (1969).

    Article  CAS  Google Scholar 

  8. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  Google Scholar 

  9. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396 (1983).

    Article  CAS  Google Scholar 

  10. Gerhart, J., Wu, M. & Kirschner, M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol. 98, 1247–1255 (1984).

    Article  CAS  Google Scholar 

  11. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000). The first example of a synthetic GRN with oscillatory dynamics. The oscillation arises from a three-component negative-feedback loop.

    Article  CAS  Google Scholar 

  12. Chance, B., Pye, E. K., Ghosh, A. K. & Hess, B. Biological and Biochemical Oscillators (Academic Press, New York, 1973).

    Google Scholar 

  13. Gray, P. & Scott, S. K. Chemical Oscillations and Instabilities (Clarendon Press, Oxford, 1994).

    Google Scholar 

  14. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  15. Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, Oxford, 1998).

    Google Scholar 

  16. Berridge, M. J. & Rapp, P. E. A comparative survey of the function, mechanism and control of cellular oscillators. J. Exp. Biol. 81, 217–279 (1979).

    CAS  PubMed  Google Scholar 

  17. Goldbeter, A. Computational approaches to cellular rhythms. Nature 420, 238–245 (2002).

    Article  CAS  Google Scholar 

  18. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  19. Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990). One of the first demonstrations that a transcriptional negative-feedback loop is at the heart of the circadian clock.

    Article  CAS  Google Scholar 

  20. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  Google Scholar 

  21. Mackey, M. C. & Glass, L. Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977). A classic study of oscillations in a time-delayed negative-feedback loop with application to physiological control systems.

    Article  CAS  Google Scholar 

  22. Griffith, J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 20, 202–208 (1968).

    Article  CAS  Google Scholar 

  23. Goodwin, B. C. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965). The first theoretical investigation of oscillations in a transcriptional negative-feedback loop.

    Article  CAS  Google Scholar 

  24. Goodwin, B. C. An entrainment model for timed enzyme syntheses in bacteria. Nature 209, 479–481 (1966).

    Article  CAS  Google Scholar 

  25. Masters, M. & Donachie, W. D. Repression and the control of cyclic enzyme synthesis in Bacillus subtilis. Nature 209, 476–479 (1966).

    Article  CAS  Google Scholar 

  26. Goldbeter, A. A model for circadian oscillations in the Drosophila period protein (PER). Proc. Biol. Sci. 261, 319–324 (1995).

    Article  CAS  Google Scholar 

  27. Leloup, J. C. & Goldbeter, A. Modeling the circadian clock: from molecular mechanism to physiological disorders. Bioessays 30, 590–600 (2008).

    Article  CAS  Google Scholar 

  28. Thomas, R. & D'Ari, R. Biological Feedback (CRC Press, Boca Raton, 1990).

    Google Scholar 

  29. Laurent, M. & Kellershohn, N. Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem. Sci. 24, 418–422 (1999).

    Article  CAS  Google Scholar 

  30. Tyson, J. J., Hong, C. I., Thron, C. D. & Novak, B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417 (1999).

    Article  CAS  Google Scholar 

  31. Segel, L. A. Biological Kinetics (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  32. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  33. Goldbeter, A. & Koshland, D. E., Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).

    Article  CAS  Google Scholar 

  34. Gunawardena, J. Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl Acad. Sci. USA 102, 14617–14622 (2005).

    Article  CAS  Google Scholar 

  35. Thron, C. D. Mathematical analysis of binary activation of a cell cycle kinase which down-regulates its own inhibitor. Biophys. Chem. 79, 95–106 (1999).

    Article  CAS  Google Scholar 

  36. Kim, S. Y. & Ferrell, J. E., Jr. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007).

    Article  CAS  Google Scholar 

  37. Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nature Genet. 36, 147–150 (2004).

    Article  CAS  Google Scholar 

  38. Lev Bar-Or, R. et al. Generation of oscillations by the p53–Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA 97, 11250–11255 (2000).

    Article  CAS  Google Scholar 

  39. Ma, L. et al. A plausible model for the digital response of p53 to DNA damage. Proc. Natl Acad. Sci. USA 102, 14266–14271 (2005).

    Article  CAS  Google Scholar 

  40. Monk, N. A. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003).

    Article  CAS  Google Scholar 

  41. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  Google Scholar 

  42. Cheong, R., Hoffmann, A. & Levchenko, A. Understanding NF-κB signaling via mathematical modeling. Mol. Syst. Biol. 4, 192 (2008).

    Article  Google Scholar 

  43. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  Google Scholar 

  44. Franck, U. F. Kinetic feedback processes in physico-chemical oscillatory systems. Faraday Symp. Chem. Soc. 9, 137–149 (1974).

    Article  Google Scholar 

  45. Rössler, O. E. A principle for chemical multivibration. J. Theor. Biol. 36, 413–417 (1972).

    Article  Google Scholar 

  46. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  CAS  Google Scholar 

  47. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    CAS  PubMed  Google Scholar 

  48. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E., Jr. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005). Convincing experimental evidence that amplification (positive feedback) makes the cell-cycle oscillator (a negative-feedback loop) more robust.

    Article  CAS  Google Scholar 

  49. Novak, B. & Tyson, J. J. Modeling the control of DNA replication in fission yeast. Proc. Natl Acad. Sci. USA 94, 9147–9152 (1997).

    Article  CAS  Google Scholar 

  50. Stricker, J. et al. A fast, robust, and tunable synthetic gene oscillator. Nature (in the press).

  51. Tsai, T. Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    Article  CAS  Google Scholar 

  52. Goldbeter, A. & Lefever, R. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972).

    Article  CAS  Google Scholar 

  53. Higgins, J. A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl Acad. Sci. USA 51, 989–994 (1964).

    Article  CAS  Google Scholar 

  54. Sel'kov, E. E. Self-oscillation in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968).

    Article  CAS  Google Scholar 

  55. Martiel, J. L. & Goldbeter, A. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52, 807–828 (1987).

    Article  CAS  Google Scholar 

  56. Tyson, J. J. & Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001).

    Article  CAS  Google Scholar 

  57. Tyson, J. J. & Novak, B. Temporal organization of the cell cycle. Curr. Biol. 18, R759–R768 (2008).

    Article  CAS  Google Scholar 

  58. Ciliberto, A., Novak, B. & Tyson, J. J. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4, 488–493 (2005).

    Article  CAS  Google Scholar 

  59. Zhang, T., Brazhnik, P. & Tyson, J. J. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6, 85–94 (2007).

    Article  Google Scholar 

  60. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O'Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007).

    Article  CAS  Google Scholar 

  61. Borisuk, M. T. & Tyson, J. J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998).

    Article  CAS  Google Scholar 

  62. Rössler, O. E. Chaos in abstract kinetics: two prototypes. Bull. Math. Biol. 39, 275–289 (1977).

    Article  Google Scholar 

  63. Snoussi, E. H. Necessary conditions for multistationarity and stable periodicity. J. Biol. Sys. 6, 3–9 (1998).

    Article  Google Scholar 

  64. Goldbeter, A. Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum. Nature 253, 540–542 (1975).

    Article  CAS  Google Scholar 

  65. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium spiking. Proc. Natl Acad. Sci. USA 85, 5051–5055 (1988).

    Article  CAS  Google Scholar 

  66. Garmendia-Torres, C., Goldbeter, A. & Jacquet, M. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr. Biol. 17, 1044–1049 (2007).

    Article  CAS  Google Scholar 

  67. Jacquet, M., Renault, G., Lallet, S., De Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497–505 (2003).

    Article  CAS  Google Scholar 

  68. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003).

    Article  CAS  Google Scholar 

  69. Glass, L. & Mackey, M.C. Pathological conditions resulting from instabilities in physiological control systems. Ann. N.Y. Acad. Sci. 316, 214–235 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.J.T. acknowledges financial support from the National Institutes of Health and the hospitality of Merton College, Oxford, UK, during the writing of this review. B.N. acknowledges support from the Biotechnology and Biological Sciences Research Council and from the European Commission Seventh Framework Programme (EC FP7). Our understanding of biochemical oscillations has developed over many years of delightful conversations with A. Goldbeter, L. Segel, A. Winfree, M. Mackey and L. Glass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Novák.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Béla Novák's homepage

John Tyson's homepage

Glossary

Somites

Early segmentations of the body of a vertebrate embryo that are laid down in a temporally and spatially periodic pattern.

Robustness

The notion that a control system should function reliably in the face of expected perturbations from outside the control system and from inevitable internal fluctuations.

Entrainment

The process whereby two interacting oscillating systems, which have different periods when running independently, assume the same period. The two oscillators may fall into synchrony, but other phase relationships are also possible.

Bistability

A reaction network with two coexisting stable steady states (separated by an unstable steady state). Which stable state the network adopts depends on the initial concentrations of the reacting species.

Hysteresis

A property of systems with bistability. The control system can be switched from one stable state to the other by a transient signal, and switched back again by a different transient signal. Hence, the state of the system depends not only on its present conditions, but also on its recent history.

Chemical chaos

Refers to oscillatory chemical systems with aperiodic unpredictable behaviour. Chaos requires at least three interacting components.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novák, B., Tyson, J. Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9, 981–991 (2008). https://doi.org/10.1038/nrm2530

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing