Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer and ageing: convergent and divergent mechanisms

Abstract

Cancer and ageing are both fuelled by the accumulation of cellular damage. Consequently, those mechanisms that protect cells from damage simultaneously provide protection against cancer and ageing. By contrast, cancer and longevity require a durable cell proliferation potential and, therefore, those mechanisms that limit indefinite proliferation provide cancer protection but favour ageing. The overall balance between these convergent and divergent mechanisms guarantees fitness and a cancer-free life until late adulthood for most individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Convergent mechanisms of cancer and ageing.
Figure 2: Divergent mechanisms of cancer and ageing.
Figure 3: Balance between convergent and divergent mechanisms of cancer and ageing.

Similar content being viewed by others

References

  1. Kirkwood, T. B. & Austad, S. N. Why do we age? Nature 408, 233–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kirkwood, T. L., Kapahi, P. & Shanley, D. P. Evolution, stress, and longevity. J. Anat. 197, 587–590 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lesnefsky, E. J. & Hoppel, C. L. Oxidative phosphorylation and aging. Ageing Res. Rev. 5, 402–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Anisimov, V. N. Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp. Gerontol. 38, 1041–1049 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  Google Scholar 

  11. Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev. Drug Discov. 5, 493–506 (2006).

    Article  CAS  Google Scholar 

  12. Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105–2108 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913–1923 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Anisimov, V. N. Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Mech. Ageing Dev. 122, 1221–1255 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hursting, S. D., Lavigne, J. A., Berrigan, D., Perkins, S. N. & Barrett, J. C. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med. 54, 131–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Berstein, L. M. Clinical usage of hypolipidemic and antidiabetic drugs in the prevention and treatment of cancer. Cancer Lett. 224, 203–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Remmen, H. & Richardson, A. Oxidative damage to mitochondria and aging. Exp. Gerontol. 36, 957–968 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Pamplona, R. & Barja, G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim. Biophys. Acta 1757, 496–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dugan, L. L. & Quick, K. L. Reactive oxygen species and aging: evolving questions. Sci. Aging Knowledge Environ. 26, pe20 (2005).

    Google Scholar 

  26. Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Mitsui, A. et al. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid. Redox Signal. 4, 693–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Golden, T. R., Hinerfeld, D. A. & Melov, S. Oxidative stress and aging: beyond correlation. Aging Cell 1, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. De Flora, S., Izzotti, A., D'Agostini, F. & Balansky, R. M. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22, 999–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 11, 1306–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Reliene, R. & Schiestl, R. H. Antioxidants suppress lymphoma and increase longevity in ATM-deficient mice. J. Nutr. 137 (Suppl. 1), 229–232 (2007).

    Article  Google Scholar 

  33. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer 6, 909–923 (2006).

    Article  CAS  Google Scholar 

  35. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  38. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Cao, I. et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep. 7, 546–552 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matheu, A. et al. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev. 18, 2736–2746 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matheu, A. et al. Delayed aging through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nature Rev. Genet. 6, 611–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Blasco, M. A. The epigenetic regulation of mammalian telomeres. Nature Rev. Genet. 8, 299–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Collins, K. & Mitchell, J. R. Telomerase in the human organism. Oncogene 21, 564–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, R. C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Munoz, P., Blanco, R., Flores, J. M. & Blasco, M. A. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nature Genet. 37, 1063–1071 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nature Med. 12, 1133–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Shay, J. W. & Wright, W. E. Telomerase therapeutics for cancer: challenges and new directions. Nature Rev. Drug Discov. 5, 577–584 (2006).

    Article  CAS  Google Scholar 

  56. Gonzalez-Suarez, E. et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 20, 2619–2630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muntoni, A. & Reddel, R. R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, R191–R196 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Blanco, R., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 21, 206–220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, X. D. et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 12, 1489–1498 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A. & Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361, 393–395 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Canela, A., Vera, E., Klatt, P. & Blasco, M. A. High-throughput telomere length quantification by FISH and its application to human population studies. Proc. Natl Acad. Sci. USA 104, 5300–5305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coviello-McLaughlin, G. M. & Prowse, K. R. Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res. 25, 3051–3058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gonzalez-Suarez, E., Geserick, C., Flores, J. M. & Blasco, M. A. Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 24, 2256–2270 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nature Genet. 36, 447–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Siegl-Cachedenier, I., Muñoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. in the press.

  70. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Serrano, M. & Blasco, M. A. Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of PTEN-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ressler, S. et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Gil, J. & Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  78. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Gentry, A. & Venkatachalam, S. Complicating the role of p53 in aging. Aging Cell 4, 157–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Gudmundsdottir, K. & Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25, 5864–5874 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, L., Li, W., Kim, S., Brodie, S. G. & Deng, C. X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the BRCA1 full-length isoform. Genes Dev. 17, 201–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varela, I. et al. Accelerated ageing in mice deficient in ZMPSTE24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nature Med. 11, 780–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Flores, I., Benetti, R. & Blasco, M. A. Telomerase regulation and stem cell behaviour. Curr. Opin. Cell Biol. 18, 254–260 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research at the laboratories of M.S. and M.A.B. is funded by the CNIO, the Spanish Ministry of Education and Science, the European Union (projects PROTEOMAGE and INTACT to M.S. and INTACT, TELOSENS, ZINCAGE, RISC-RAD and MOL CANCER MED to M.A.B.), and the Josef Steiner Cancer Research Award 2003 to M.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Serrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

aplastic anaemia

dyskeratosis congenita syndrome

FURTHER INFORMATION

Manuel Serrano's homepage

Maria A. Blasco's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, M., Blasco, M. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8, 715–722 (2007). https://doi.org/10.1038/nrm2242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing