Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Highway to the inner nuclear membrane: rules for the road

Abstract

To enter the nucleus a protein must be chaperoned by a transport factor through the nuclear pore complex or it must be small enough to pass through by diffusion. Although these principles have long described the nuclear import of soluble proteins, recent evidence indicates that they also apply to the import of integral inner nuclear membrane proteins. Here we develop a set of rules that might govern the transport of proteins to the inner nuclear membrane.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the nuclear pore complex.
Figure 2: Karyopherin-mediated import.

Similar content being viewed by others

References

  1. Mounkes, L., Kozlov, S., Burke, B. & Stewart, C. L. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev. 13, 223–230 (2003).

    Article  CAS  Google Scholar 

  2. Burke, B. & Stewart, C. L. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu. Rev. Genomics Hum. Genet. 7, 369–405 (2006).

    Article  CAS  Google Scholar 

  3. Tzur, Y. B., Wilson, K. L. & Gruenbaum, Y. SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton. Nature Rev. Mol. Cell Biol. 7, 782–788 (2006).

    Article  CAS  Google Scholar 

  4. Kvam, E. & Goldfarb, D. S. Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J. Cell Sci. 117, 4959–4968 (2004).

    Article  CAS  Google Scholar 

  5. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    Article  CAS  Google Scholar 

  6. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    Article  CAS  Google Scholar 

  7. Powell, L. & Burke, B. Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: in vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell Biol. 111, 2225–2234 (1990).

    Article  CAS  Google Scholar 

  8. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  Google Scholar 

  9. Ohba, T., Schirmer, E. C., Nishimoto, T. & Gerace, L. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol. 167, 1051–1062 (2004).

    Article  CAS  Google Scholar 

  10. Ostlund, C., Ellenberg, J., Hallberg, E., Lippincott-Schwartz, J. & Worman, H. J. Intracellular trafficking of emerin, the Emery–Dreifuss muscular dystrophy protein. J. Cell Sci. 112, 1709–1719 (1999).

    CAS  PubMed  Google Scholar 

  11. Wu, W., Lin, F. & Worman, H. J. Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J. Cell Sci. 115, 1361–1371 (2002).

    CAS  PubMed  Google Scholar 

  12. Rolls, M. M. et al. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J. Cell Biol. 146, 29–44 (1999).

    Article  CAS  Google Scholar 

  13. Ostlund, C., Sullivan, T., Stewart, C. L. & Worman, H. J. Dependence of diffusional mobility of integral inner nuclear membrane proteins on A-type lamins. Biochemistry 45, 1374–1382 (2006).

    Article  Google Scholar 

  14. Gruenbaum, Y., Lee, K. K., Liu, J., Cohen, M. & Wilson, K. L. The expression, lamin-dependent localization and RNAi depletion phenotype for emerin in C. elegans. J. Cell Sci. 115, 923–929 (2002).

    CAS  PubMed  Google Scholar 

  15. Muchir, A. et al. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 291, 352–362 (2003).

    Article  CAS  Google Scholar 

  16. Vaughan, A. et al. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J. Cell Sci. 114, 2577–2590 (2001).

    CAS  PubMed  Google Scholar 

  17. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  Google Scholar 

  18. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  Google Scholar 

  19. Torrisi, M. R. et al. Localization of Epstein–Barr virus envelope glycoproteins on the inner nuclear membrane of virus-producing cells. J. Virol. 63, 828–832 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Torrisi, M. R., Lotti, L. V., Pavan, A., Migliaccio, G. & Bonatti, S. Free diffusion to and from the inner nuclear membrane of newly synthesized plasma membrane glycoproteins. J. Cell Biol. 104, 733–737 (1987).

    Article  CAS  Google Scholar 

  21. Bergmann, J. E. & Singer, S. J. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J. Cell Biol. 97, 1777–1787 (1983).

    Article  CAS  Google Scholar 

  22. Soullam, B. & Worman, H. J. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol. 130, 15–27 (1995).

    Article  CAS  Google Scholar 

  23. Furukawa, K., Pante, N., Aebi, U. & Gerace, L. Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope. EMBO J. 14, 1626–1636 (1995).

    Article  CAS  Google Scholar 

  24. Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8219–8223 (2003).

    Article  CAS  Google Scholar 

  25. Fried, H. & Kutay, U. Nucleocytoplasmic transport: taking an inventory. Cell. Mol. Life Sci. 60, 1659–1688 (2003).

    Article  CAS  Google Scholar 

  26. Tran, E. J. & Wente, S. R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    Article  CAS  Google Scholar 

  27. Matsuura, Y., Lange, A., Harreman, M. T., Corbett, A. H. & Stewart, M. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J. 22, 5358–5369 (2003).

    Article  CAS  Google Scholar 

  28. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005).

    Article  CAS  Google Scholar 

  29. King, M. C., Lusk, C. P. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006).

    Article  CAS  Google Scholar 

  30. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  Google Scholar 

  31. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  Google Scholar 

  32. Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).

    Article  CAS  Google Scholar 

  33. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004).

    Article  CAS  Google Scholar 

  34. Chial, H. J., Rout, M. P., Giddings, T. H. & Winey, M. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J. Cell Biol. 143, 1789–1800 (1998).

    Article  CAS  Google Scholar 

  35. Miao, M., Ryan, K. J. & Wente, S. R. The integral membrane protein Pom34p functionally links nucleoporin subcomplexes. Genetics 172, 1441–1457 (2006).

    Article  CAS  Google Scholar 

  36. Aitchison, J. D., Rout, M. P., Marelli, M., Blobel, G. & Wozniak, R. W. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133–1148 (1995).

    Article  CAS  Google Scholar 

  37. Shulga, N., Mosammaparast, N., Wozniak, R. & Goldfarb, D. S. Yeast nucleoporins involved in passive nuclear envelope permeability. J. Cell Biol. 149, 1027–1038 (2000).

    Article  CAS  Google Scholar 

  38. Makhnevych, T., Lusk, C. P., Anderson, A. M., Aitchison, J. D. & Wozniak, R. W. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823 (2003).

    Article  CAS  Google Scholar 

  39. Saksena, S., Summers, M. D., Burks, J. K., Johnson, A. E. & Braunagel, S. C. Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope. Nature Struct. Mol. Biol. 13, 500–508 (2006).

    Article  CAS  Google Scholar 

  40. Miyamoto, Y. et al. Importin α can migrate into the nucleus in an importin β- and Ran-independent manner. EMBO J. 21, 5833–5842 (2002).

    Article  CAS  Google Scholar 

  41. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    Article  CAS  Google Scholar 

  42. Hodel, A. E. et al. Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J. Biol. Chem. 281, 23545–23556 (2006).

    Article  CAS  Google Scholar 

  43. Leslie, D. M. et al. Characterization of karyopherin cargoes reveals unique mechanisms of Kap121p-mediated nuclear import. Mol. Cell. Biol. 24, 8487–8503 (2004).

    Article  CAS  Google Scholar 

  44. Zargari, A. et al. Inner nuclear membrane proteins Asi1, Asi2 and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J. Biol. Chem. 282, 594–605 (2006).

    Article  Google Scholar 

  45. Boban, M. et al. Asi1 is an inner nuclear membrane protein that restricts promoter access of two latent transcription factors. J. Cell Biol. 173, 695–707 (2006).

    Article  CAS  Google Scholar 

  46. Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. & Siniossoglou, S. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941 (2005).

    Article  CAS  Google Scholar 

  47. Jaspersen, S. L. et al. The Sad1–UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J. Cell Biol. 174, 665–675 (2006).

    Article  CAS  Google Scholar 

  48. Jaspersen, S. L., Giddings, T. H., Jr. & Winey, M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol. 159, 945–956 (2002).

    Article  CAS  Google Scholar 

  49. Schirmer, E. C., Florens, L., Guan, T., Yates, J. R. 3rd & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  50. Dreger, M., Bengtsson, L., Schoneberg, T., Otto, H. & Hucho, F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc. Natl Acad. Sci. USA 98, 11943–11948 (2001).

    Article  CAS  Google Scholar 

  51. Brachner, A., Reipert, S., Foisner, R. & Gotzmann, J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J. Cell Sci. 118, 5797–5810 (2005).

    Article  CAS  Google Scholar 

  52. Kreft, S. G., Wang, L. & Hochstrasser, M. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281, 4646–4653 (2006).

    Article  CAS  Google Scholar 

  53. Zhang, Q. et al. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J. Cell Sci. 118, 673–687 (2005).

    Article  CAS  Google Scholar 

  54. Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Peters, S. Wente, R. Wozniak, A. Corbett and L. Veenhoff for insightful discussions regarding INM transport. We thank H. Shi for comments on the initial drafts and M. Rout for valuable criticisms of the manuscript. M.C.K. is supported by a Kirchstein National Research Service Award postdoctoral fellowship and G.B. and C.P.L. are supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan C. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

PSORTII algorithm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusk, C., Blobel, G. & King, M. Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8, 414–420 (2007). https://doi.org/10.1038/nrm2165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing