Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease

Key Points

  • PIN1 (protein interacting with NIMA (never in mitosis A)-1) was originally identified as a protein that physically interacts with NIMA mitotic kinase and functionally suppresses its ability to induce mitotic catastrophe. PIN1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase family of proteins, which encompasses cyclophilins, FK506-binding proteins and parvulins.

  • Unlike all other known prolyl isomerases, PIN1 binds to and catalyses the conversion of specific Pro-directed Ser/Thr phosphorylation motifs between the two completely distinct cis and trans conformations. Such conformational changes after phosphorylation have a profound impact on many key regulators in diverse cellular processes, including regulation of cell growth, stress responses, the immune response, germ cell development, neuronal differentiation and survival.

  • PIN1-catalysed phosphorylation-dependent prolyl isomerization has emerged as a unique molecular timer that modulates its multiple targets at various steps of a given cellular process to synergistically control the amplitude and duration of a cellular response or process.

  • PIN1 is tightly regulated under physiological conditions by multiple mechanisms, which include transcriptional regulation and post-translational modifications such as phosphorylation, oxidative modifications and ubiquitylation. PIN1 deregulation has an important role in a growing number of pathological conditions.

  • PIN1 is prevalently overexpressed in human cancers and its overexpression levels correlate with poor clinical outcome. Furthermore, PIN1 promotes oncogenesis by regulating multiple oncogenic signalling pathways at various levels.

  • PIN1 expression is induced during neuron differentiation and acts on tau and amyloid precursor protein (APP) to restore the biological function of tau and to promote non-amyloidogenic APP processing. However, PIN1 activity is inhibited by multiple mechanisms in Alzheimer's disease neurons and its deregulation may provide a link between neurofibrillary tangles and senile plaques, the two neuropathological hallmarks in Alzheimer's disease.

  • The PIN1-catalysed regulatory mechanism might offer potential new diagnostics and/or therapeutics for some diseases, especially cancer, Alzheimer's disease and asthma.

Abstract

Protein phosphorylation regulates many cellular processes by causing changes in protein conformation. The prolyl isomerase PIN1 has been identified as a regulator of phosphorylation signalling that catalyses the conversion of specific phosphorylated motifs between the two completely distinct conformations in a subset of proteins. PIN1 regulates diverse cellular processes, including growth-signal responses, cell-cycle progression, cellular stress responses, neuronal function and immune responses. In line with the diverse physiological roles of PIN1, it has also been linked to several diseases that include cancer, Alzheimer's disease and asthma, and thus it might represent a novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural basis for the unique specificity of PIN1 towards specific pSer/Thr-Pro motifs.
Figure 2: PIN1-catalysed prolyl isomerization regulates a spectrum of target activities.
Figure 3: PIN1 promotes oncogenesis by regulating multiple oncogenic signalling at various levels.
Figure 4: The regulation of tau function and APP processing by PIN1 in healthy and Alzheimer's neurons.

Similar content being viewed by others

References

  1. Pawson, T. & Scott, J. D. Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  4. Lee, M. S. & Tsai, L. H. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimers Dis. 5, 127–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lu, K. P., Liou, Y. C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. BioEssays 25, 174–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wulf, G., Finn, G., Suizu, F. & Lu, K. P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nature Cell Biol. 7, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996). Describes the discovery of PIN1 as one of three proteins that interact with NIMA to suppress its lethal mitotic phenotype, and shows that PIN1 is the first active peptidyl-prolyl isomerase that is essential for cell division in budding yeast.

    Article  CAS  PubMed  Google Scholar 

  9. Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997). References 9 and 10 describe the first identification of PIN1 as a phosphorylation-specific prolyl isomerase and PIN1 substrates.

    Article  CAS  PubMed  Google Scholar 

  11. Fischer, G. & Aumuller, T. Regulation of peptide bond cis/transisomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148, 105–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999). Describes the PIN1 WW domain as the first phosphoSer- or phosphoThr-binding module to be discovered after phosphoSer- or phosphoThr-binding 14-3-3 proteins.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, X. Z., Lu, P. J., Wulf, G. & Lu, K. P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci. 56, 788–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Atchison, F. W. & Means, A. R. A role for Pin1 in mammalian germ cell development and spermatogenesis. Front. Biosci. 9, 3248–3256 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, P. Pin1: a proline isomerase that makes you wheeze? Nature Immunol. 6, 1211–1212 (2005).

    Article  CAS  Google Scholar 

  16. Maudsley, S. & Mattson, M. P. Protein twists and turns in Alzheimer disease. Nature Med. 12, 392–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Butterfield, D. A. et al. Pin1 in Alzheimer's disease. J. Neurochem. 98, 1697–1706 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Goutagny, N., Severa, M. & Fitzgerald, K. A. Pin-ning down immune responses to RNA viruses. Nature Immunol. 7, 555–557 (2006).

    Article  CAS  Google Scholar 

  19. Hajnoczky, G. & Hoek, J. B. Cell signaling. Mitochondrial longevity pathways. Science 315, 607–609 (2007).

    Article  PubMed  Google Scholar 

  20. Shaw, P. E. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep. 8, 40–45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Balastik, M., Lim, J., Pastorino, L. & Lu, K. P. Pin1 in Alzheimer's disease: multiple substrates, one regulatory mechanisms? Biophys. Biochem. Acta 1772, 422–429 (2007).

    CAS  Google Scholar 

  22. Avila, M. A. & Lu, K. P. Hepatitis B virus X-protein and Pin1 in liver cancer: “Les liaisons dangereuses”. Gastroenterology 132, 1088–1103 (2007).

    Article  CAS  Google Scholar 

  23. Yeh, E. S. & Means, A. R. PIN1, the cell cycle and cancer. Nature Rev. Cancer 7, 381–388 (2007).

    Article  CAS  Google Scholar 

  24. Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Eckert, B., Martin, A., Balbach, J. & Schmid, F. X. Prolyl isomerization as a molecular timer in phage infection. Nature Struct. Mol. Biol. 12, 619–623 (2005).

    Article  Google Scholar 

  26. Lummis, S. C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, C. J., Santos-Rosa, H. & Kouzarides, T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126, 905–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar, P., Reichman, C., Saleh, T., Birge, R. B. & Kalodimos, C. G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicholson, L. K. & Lu, K. P. Prolyl cis-trans isomerization as a molecular timer in Crk signaling. Mol. Cell 25, 483–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nature Chem. Biol. (in the press).

  31. Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 478, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    CAS  Google Scholar 

  34. Kipping, M. et al. Increased backbone flexibility in threonine45-phosphorylated hirudin upon pH change. Biochemistry 40, 7957–7963 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Dolinski, K., Muir, S., Cardenas, M. & Heitman, J. All cyclophilins and FKBPs are dispensible for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 13093–13098 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joseph, J. D., Daigle, S. N. & Means, A. R. PINA is essential for growth and positively influences NIMA function in Aspergillus nidulans. J. Biol. Chem. 279, 32373–32384 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Devasahayam, G., Chaturvedi, V. & Hanes, S. D. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans. Genetics 160, 37–48 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, H. K., Forsburg, S. L., John, U. P., O'Connell, M. J. & Hunter, T. Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. J. Cell Sci. 114, 3779–3788 (2001).

    CAS  PubMed  Google Scholar 

  39. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999). Describes the first generation of Pin1 -deficient mice, but reports that they have no phenotype, which has subsequently been found to be incorrect.

    Article  CAS  PubMed  Google Scholar 

  40. Arevalo-Rodriguez, M., Cardenas, M. E., Wu, X., Hanes, S. D. & Heitman, J. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3–Rpd3 histone deacetylase. EMBO J. 19, 3739–3749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujimori, F. et al. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Biochem. Biophys. Res. Commun. 289, 181–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Yao, J. L., Kops, O., Lu, P. J. & Lu, K. P. Functional conservation of phosphorylation-specific prolyl isomerases in plants. J. Biol. Chem. 276, 13517–13523 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, J. X., Dagostino, E., Rejto, P. A., Mroczkowski, B. & Murray, B. Identification and characterization of a novel and functional murine Pin1 isoform. Biochem. Biophys. Res. Commun. 359, 529–535 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999). Identifies tau as the first PIN1 substrate in neurons and finds that PIN1 is depleted in Alzheimer's brains, providing the first link between PIN1 and Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  45. Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ryo, A., Nakamura, N., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001). References 45 and 46 are the first demonstrations of PIN1 overexpression in human cancers and its crucial role in activating Ras/JNK/c-Jun and Wnt/β-catenin oncogenic pathways.

    Article  CAS  PubMed  Google Scholar 

  47. Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. USA 99, 1335–1340 (2002). Describes the first obvious set of cell proliferative phenotypes in Pin1 -deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nature Struct. Biol. 7, 639–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Wintjens, R. et al. 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem. 276, 25150–25156. (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Jacobs, D. M. et al. Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J. Biol. Chem. 278, 26174–26182 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Smet, C., Wieruszeski, J. M., Buee, L., Landrieu, I. & Lippens, G. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Lett. 579, 4159–4164 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-b production. Nature 440, 528–534 (2006). Provides the first direct demonstration of the dynamic conformational regulation after phosphorylation by PIN1 using NMR and describes that PIN1 deregulation might contribute to both tangle and plaque pathologies in Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  54. Namanja, A. T. et al. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human PIN1. Structure 15, 313–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, T., Zintsmaster, J. S., Namanja, A. T. & Peng, J. W. Sequence-specific dynamics modulate recognition specificity in WW domains. Nature Struct. Mol. Biol. 14, 325–331 (2007).

    Article  CAS  Google Scholar 

  56. Labeikovsky, W., Eisenmesser, E. Z., Bosco, D. A. & Kern, D. Structure and dynamics of pin1 during catalysis by NMR. J. Mol. Biol. 367, 1370–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramelot, T. A. & Nicholson, L. K. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P. & Lu, K. P. Critical role of WW domain phosphorylation in regulating its phosphoserine-binding activity and the Pin1 function. J. Biol. Chem. 277, 2381–2384 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Hamdane, M. et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci. 32, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bao, L., Sauter, G., Sowadski, J., Lu, K. P. & Wang, D. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Atchison, F. W., Capel, B. & Means, A. R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell Biol. 22, 5281–5295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. MacLachlan, T. K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Eckerdt, F. et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem. 280, 36575–36583 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sultana, R. et al. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol. Aging 27, 918–925 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease. Neurobiol. Dis. 22, 223–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crenshaw, D. G., Yang, J., Means, A. R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 17, 1315–1327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Winkler, K. E., Swenson, K. I., Kornbluth, S. & Means, A. R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Stukenberg, P. T. & Kirschner, M. W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Okamoto, K. & Sagata, N. Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc. Natl Acad. Sci. U S. A 104, 3753–3758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bernis, C. et al. Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF (betatrcp). EMBO Rep. 8, 91–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, Y. X. & Manley, J. L. The prolyl isomerase pin1 functions in mitotic chromosome condensation. Mol. Cell 26, 287–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004). Describes MYC as a PIN1 substrate with MYC being more stable in Pin1 -deficient embryonic fibroblasts. This suggests that loss of PIN1 may be oncogenic, although other studies show that loss of PIN1 in mice prevents cancer development induced either by overexpression of oncogenic Neu or Ras, or by knockout of p53.

    Article  CAS  PubMed  Google Scholar 

  77. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Suizu, F., Ryo, A., Wulf, G., Lim, J. & Lu, K. P. Pin1 regulates centrosome duplication and its overexpression induces centrosome amplification, chromosome instability and oncogenesis. Mol. Cell Biol. 26, 1463–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825. (2002).

    Article  CAS  Google Scholar 

  80. Doxsey, S., McCollum, D. & Theurkauf, W. Centrosomes in cellular regulation. Annu. Rev. Cell Dev. Biol. 21, 411–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Lu, K. P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Lu, K. P. et al. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Mol. Carcinog. 45, 397–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, S. Y. et al. Activation of β-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-β-catenin interaction. Mol. Cell Biol. 26, 929–939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lufei, C., Koh, T. H., Uchida, T. & Cao, X. Pin1 is required for the Ser727 phosphorylation-dependent Stat3 activity. Oncogene (in the press).

  88. Pang, R. et al. PIN1 overexpression and β-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182–4186 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Yeh, E. S., Lew, B. O. & Means, A. R. The loss of PIN1 deregulates cyclin E and sensitizes MEFs to genomic instability. J. Biol. Chem. 281, 241–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 26, 3835–3845 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Toledo, F. et al. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol. Cell Biol. 27, 1425–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karin, M. & Gallagher, E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57, 283–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002). References 94 96 identify p53 as a PIN1 substrate in response to genotoxic stress.

    Article  CAS  PubMed  Google Scholar 

  97. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Pinton, P. et al. Protein kinase C β and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Moretto Zita, M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J. 26, 1761–1771 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, Q. M. et al. Activation of JNK3 after injury induces cytochrome C release by facilitating Pin1-dependent degradation of Mcl-1. J. Neurosci. 27, 8395–8404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Becker, E. B. & Bonni, A. Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery. Neuron 49, 655–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Mattson, M. P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Webber, K. M. et al. The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech. Ageing Dev. 126, 1019–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim. Biophys. Acta 1772, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, M. S. et al. APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83–95 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thorpe, J. R., Morley, S. J. & Rulten, S. L. Utilizing the peptidyl-prolyl cis-trans isomerase pin1 as a probe of its phosphorylated target proteins. Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer's diseased brain. J. Histochem. Cytochem. 49, 97–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Ramakrishnan, P., Dickson, D. W. & Davies, P. Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiol. Dis. 14, 251–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Thorpe, J. R. et al. Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis. 17, 237–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, S. et al. The significance of Pin1 in the development of Alzheimer's disease. J. Alzheimers Dis. 11, 13–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Davies, D. C., Horwood, N., Isaacs, S. L. & Mann, D. M. The effect of age and Alzheimer's disease on pyramidal neuron density in the individual fields of the hippocampal formation. Acta Neuropathol. (Berl.) 83, 510–517 (1992).

    Article  CAS  Google Scholar 

  116. Campbell, H. D., Webb, G. C., Fountain, S. & Young, I. G. The human PIN1 peptidyl-prolyl cis/trans isomerase gene maps to human chromosome 19p13 and the closely related PIN1L gene to 1p31. Genomics 44, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Wijsman, E. M. et al. Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am. J. Hum. Genet. 75, 398–409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Segat, L. et al. Pin1 promoter polymorphisms are associated with Alzheimer's disease. Neurobiol. Aging 28, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Lambert, J. C., Bensemain, F., Chapuis, J., Cottel, D. & Amouyel, P. Association study of the PIN1 gene with Alzheimer's disease. Neurosci. Lett. 402, 259–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Nowotny, P. et al. Association studies between common variants in prolyl isomerase Pin1 and the risk for late-onset Alzheimer's disease. Neurosci. Lett. 419, 15–17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Gotz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Akiyama, H., Shin, R. W., Uchida, C., Kitamoto, T. & Uchida, T. Pin1 promotes production of Alzheimer's amyloid β from β-cleaved amyloid precursor protein. Biochem. Biophys. Res. Commun. 336, 521–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Takahashi, R. H. et al. Intraneuronal Alzheimer aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol. 161, 1869–1879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wong, P. C., Cai, H., Borchelt, D. R. & Price, D. L. Genetically engineered mouse models of neurodegenerative diseases. Nature Neurosci. 5, 633–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Roe, C. M., Behrens, M. I., Xiong, C., Miller, J. P. & Morris, J. C. Alzheimer disease and cancer. Neurology 64, 895–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Jicha, G. A. et al. A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem. 69, 2087–2095 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  132. Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081–35084 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nature Cell Biol. 4, E131–E136 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  135. Shen, Z. J., Esnault, S. & Malter, J. S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nature Immunol. 6, 1280–1287 (2005). Describes that PIN1 is activated in asthma and that it has a crucial role in granulocyte-macrophage colony-stimulating factor production and eosinophil survival.

    Article  CAS  Google Scholar 

  136. Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nature Immunol. 7, 598–605 (2006).

    Article  CAS  Google Scholar 

  137. Yu, L. et al. Regulation of Bruton's tyrosine kinase (Btk) by the peptidyl-prolyl isomerase Pin1. J. Biol. Chem. 281, 18201–18207 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Schreiber, S. L. & Crabtree, G. R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  140. Ayala, G. et al. Pin1 is a novel prognostic marker in prostate cancer. Cancer Research 63, 6244–6251 (2003).

    CAS  PubMed  Google Scholar 

  141. Kuramochi, J. et al. High Pin1 expression is associated with tumor progression in colorectal cancer. J. Surg. Oncol. 94, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. He, J. et al. Overexpression of Pin1 in non-small cell lung cancer (NSCLC) and its correlation with lymph node metastases. Lung Cancer 56, 51–58 (2007).

    Article  PubMed  Google Scholar 

  143. Pang, R. et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132, 1088–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953–5960 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, X. J., Xu, B., Mullins, A. B., Neiler, F. K. & Etzkorn, F. A. Conformationally locked isostere of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J. Am. Chem. Soc. 126, 15533–15542 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Wildemann, D. et al. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J. Med. Chem. 49, 2147–2150 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, Y. et al. Structural basis for high-affinity peptide inhibition of human Pin1. ACS Chem. Biol. 2, 320–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Formichi, P., Battisti, C., Radi, E. & Federico, A. Cerebrospinal fluid tau, A β, and phosphorylated tau protein for the diagnosis of Alzheimer's disease. J. Cell Physiol. 208, 39–46 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Nicholson, L. Cantley, B. Neel and T. Hunter for advice, to Y. Liou and L. Nicholson for their contributions to Box 1 and Figures 1 and 2, and to the members of the Lu laboratory for stimulating discussions. Work done in the authors' laboratories is supported by National Institutes of Health grants to X. Z. Z. and K.P.L., and gift donations from EPIX Pharmaceuticals and Merck Research Laboratories Boston to K.P.L.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (table)

PIN1 substrates, targeting sites and functional consequences (PDF 220 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

frontotemporal dementia

FURTHER INFORMATION

Kun Ping Lu's homepage

Glossary

Pro-directed kinase

A protein kinase that phosphorylates certain Ser/Thr residues that precede a Pro residue (Ser/Thr-Pro motifs).

Peptidyl-prolyl cis/trans isomerase

A member of a large superfamily of enzymes that catalyse cis/trans isomerization of Pro imidic peptide bonds by reducing the energy barrier between these two states.

Polo-like kinase

A family of protein kinases that regulate spindle assembly, mitotic entry and chromosome segregation.

WW domain

A protein-interacting module that contains 38 amino acid residues folded into a three-stranded β-sheet structure. The domain name is derived from two conserved Trp residues that are spaced 20–22 residues apart within the consensus sequence.

Amyloid precursor protein

A transmembrane glycoprotein that is sequentially cleaved to generate Aβ peptides in Alzheimer's disease.

E2F

A family of transcription factors.

Mitotic catastrophe

A type of cell death that is linked to abnormal activation of the mitotic kinases due to deficient cell-cycle checkpoints.

Wee box

A small region in the N-terminal regulatory domain of Xenopus laevis somatic Wee1 that is required for both normal kinase activity and mitotic inactivation of the kinase.

Anaphase promoting complex

A multiprotein complex that is activated during mitosis to initiate anaphase and functions as an E3 ubiquitin ligase to ubiquitylate proteins for degradation by the 26S proteasome.

G2–M phase

A stage in the cell cycle whereby chromosomes that have been duplicated during S phase undergo compaction in preparation for mitosis.

Topoisomerase

A class of enzymes that alter the supercoiling of DNA. This allows the occurrence of DNA replication or transcription, or chromatin condensation.

Centrosome

A major microtubule-organizing structure in animal cells that determines the organization of the mitotic spindle poles that segregate duplicated chromosomes between dividing cells.

Ubiquitin E3 ligase

An enzyme that facilitates the attachment of ubiquitin onto substrates.

Tau

A microtubule-binding protein that promotes microtubule assembly.

Activator protein-1

(AP1). A transcription factor that consists of either a Jun–Jun homodimer or a Jun–Fos heterodimer.

Senile plaques

One of the two neuropathological hallmarks found in the brains of patients with Alzheimer's disease. Plaques are primarily composed of Aβ peptides that are derived from amyloid precursor protein.

Neurofibrillary tangles

The other neuropathological hallmark found in the brains of patients with Alzheimer's disease. Tangles consist mainly of the microtubule-binding protein tau in a hyperphosphorylated state.

TG3

A phospho- and conformation-specific monoclonal antibody that recognizes the phosphorylated Thr231 in the tangle-specific conformation of tau observed in brains from patients with Alzheimer's disease.

Aβ42

42-amino-acid-long Aβ peptides that are derived from amyloid precursor protein after sequential cleavages by β- and γ-secretases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, K., Zhou, X. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904–916 (2007). https://doi.org/10.1038/nrm2261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing