Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exporting RNA from the nucleus to the cytoplasm

Key Points

  • During eukaryotic gene expression, different classes of RNA molecules are synthesized in the nucleus and are exported to the cytoplasm by mobile export receptors.

  • Export of tRNA requires a specific export receptor called exportin-t, a member of the RanGTP-dependent karyopherin superfamily.

  • Export of microRNA (miRNA) by exportin-5 is coupled to RNA processing by Drosha and Dicer.

  • Small nuclear (sn)RNA export depends on the cap-binding complex (CBC), the general export receptor CRM1 and PHAX, an adaptor with activity that is regulated by phosphorylation.

  • Export of mRNA by the conserved Mex67–Mtr2 receptor depends on various adaptor proteins and is extensively coupled to splicing (in metazoa) or transcription (in yeast). During gene expression, genes can become targeted to the nuclear pore complex (NPC), which could facilitate transcription and mRNA export to the cytoplasm.

  • Export of ribosomal (r)RNA is unique as it depends on several different export receptors that simultaneously bind the large pre-ribosomal subunits, thereby facilitating their passage through the NPC.

Abstract

The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different RNA export pathways.
Figure 2: Nuclear export of tRNA and microRNA.
Figure 3: Transcription-coupled or splicing-coupled mRNA export.
Figure 4: Gene gating and mRNA export.
Figure 5: Nuclear export of ribosomal subunits.

Similar content being viewed by others

References

  1. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol. 8, 195–208 (2007).

    CAS  Google Scholar 

  2. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    CAS  PubMed  Google Scholar 

  3. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    PubMed  Google Scholar 

  4. Pemberton, L. F., Blobel, G. & Rosenblum, J. S. Transport routes through the nuclear pore complex. Curr. Opin. Cell Biol. 10, 392–399 (1998).

    CAS  PubMed  Google Scholar 

  5. Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    CAS  PubMed  Google Scholar 

  6. Rodriguez, M. S., Dargemont, C. & Stutz, F. Nuclear export of RNA. Biol. Cell 96, 639–655 (2004).

    CAS  PubMed  Google Scholar 

  7. Reed, R. & Hurt, E. C. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).

    CAS  PubMed  Google Scholar 

  8. Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319 (2001).

    CAS  PubMed  Google Scholar 

  9. Reed, R. & Cheng, H. TREX, SR proteins and export of mRNA. Curr. Opin. Cell Biol. 17, 269–273 (2005).

    CAS  PubMed  Google Scholar 

  10. Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299–306 (2006).

    CAS  PubMed  Google Scholar 

  11. Huang, Y. & Steitz, J. A. SRprises along a messenger's journey. Mol. Cell 17, 613–615 (2005).

    CAS  PubMed  Google Scholar 

  12. Cullen, B. R. Nuclear mRNA export: insights from virology. Trends Biochem. Sci. 28, 419–424 (2003).

    CAS  PubMed  Google Scholar 

  13. Hopper, A. K. & Phizicky, E. M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    CAS  PubMed  Google Scholar 

  14. Simos, G. & Hurt, E. Transfer RNA biogenesis: a visa to leave the nucleus. Curr. Biol. 9, R238–R241 (1999).

    CAS  PubMed  Google Scholar 

  15. Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA Publ. RNA Soc. 5, 539–549 (1999).

    CAS  Google Scholar 

  16. Yoshihisa, T., Yunoki-Esaki, K., Ohshima, C., Tanaka, N. & Endo, T. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol. Biol. Cell 14, 3266–3279 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaheen, H. H. & Hopper, A. K. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 102, 11290–11295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takano, A., Endo, T. & Yoshihisa, T. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 309, 140–142 (2005).

    CAS  PubMed  Google Scholar 

  19. Kutay, U. et al. Identification of a tRNA-specific nuclear export receptor. Mol. Cell 1, 359–369 (1998).

    CAS  PubMed  Google Scholar 

  20. Arts, G. J., Fornerod, M. & Mattaj, I. W. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8, 305–314 (1998). References 19 and 20 are the first reports of the human tRNA export receptor.

    CAS  PubMed  Google Scholar 

  21. Arts, G. J., Kuersten, S., Romby, P., Ehresmann, B. & Mattaj, I. W. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J. 17, 7430–7441 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Calado, A., Treichel, N., Muller, E. C., Otto, A. & Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21, 6216–6224 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bohnsack, M. T. et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205–6215 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hellmuth, K. et al. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18, 6364–6386 (1998).

    Google Scholar 

  25. Simos, G., Sauer, A., Fasiolo, F. & Hurt, E. C. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol. Cell 1, 235–242 (1998).

    CAS  PubMed  Google Scholar 

  26. Lund, E. & Dahlberg, J. E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282, 2082–2085 (1998). Shows that aminoacylation can occur in the nucleus.

    CAS  PubMed  Google Scholar 

  27. Grosshans, H., Hurt, E. & Simos, G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 14, 830–840 (2000). Reports that tRNA aminoacylation and eEF1α are required for efficient nuclear tRNA export in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarkar, S., Azad, A. K. & Hopper, A. K. Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 14366–14371 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng, W. & Hopper, A. K. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 5412–5417 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McGuire, A. T. & Mangroo, D. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery. EMBO J. 26, 288–300 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  32. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  Google Scholar 

  33. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  34. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol. 13, 1097–1101 (2006).

    CAS  Google Scholar 

  37. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003). Demonstrates the function of Drosha in primary miRNA processing.

    CAS  PubMed  Google Scholar 

  38. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    CAS  PubMed  Google Scholar 

  39. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    CAS  PubMed  Google Scholar 

  40. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003). References 39–41 report the identification of exportin-5 as the miRNA export receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    CAS  PubMed  Google Scholar 

  43. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  44. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  45. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  PubMed  Google Scholar 

  46. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    CAS  PubMed  Google Scholar 

  47. Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rana, T. M. Illuminating the silence: understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol. 8, 23–36 (2007).

    CAS  Google Scholar 

  51. Yi, R., Doehle, B. P., Qin, Y., Macara, I. G. & Cullen, B. R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Medlin, J. E., Uguen, P., Taylor, A., Bentley, D. L. & Murphy, S. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J. 22, 925–934 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yong, J., Wan, L. & Dreyfuss, G. Why do cells need an assembly machine for RNA–protein complexes? Trends Cell Biol. 14, 226–232 (2004).

    CAS  PubMed  Google Scholar 

  54. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Lührmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483 (1995). Identifies a NES in a protein for the first time.

    CAS  PubMed  Google Scholar 

  55. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997). First report of an export receptor for NES-containing proteins.

    CAS  PubMed  Google Scholar 

  56. Hamm, J. & Mattaj, I. W. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63, 109–118 (1990).

    CAS  PubMed  Google Scholar 

  57. Izaurralde, E. et al. A cap-binding protein complex mediating U snRNA export. Nature 376, 709–712 (1995). Reports that the CBC is required for transport of snRNA to the cytoplasm.

    CAS  PubMed  Google Scholar 

  58. Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I. W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101, 187–198 (2000). This work identifies PHAX as a phosphorylation-dependent export adaptor for snRNAs.

    CAS  PubMed  Google Scholar 

  59. Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hieronymus, H. & Silver, P. A. Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nature Genet. 33, 155–161 (2003).

    CAS  PubMed  Google Scholar 

  61. Kim Guisbert, K., Duncan, K., Li, H. & Guthrie, C. Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 11, 383–393 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    CAS  PubMed  Google Scholar 

  63. Fasken, M. B. & Corbett, A. H. Process or perish: quality control in mRNA biogenesis. Nature Struct. Mol. Biol. 12, 482–488 (2005).

    CAS  Google Scholar 

  64. Jensen, T. H., Dower, K., Libri, D. & Rosbash, M. Early formation of mRNP. License for export or quality control? Mol. Cell 11, 1129–1138 (2003).

    CAS  PubMed  Google Scholar 

  65. Hieronymus, H., Yu, M. C. & Silver, P. A. Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev. 18, 2652–2662 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T. H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001). Demonstrates that defective transcripts are retained at transcription sites, and this retention process requires the exosome.

    CAS  PubMed  Google Scholar 

  67. Houseley, J., LaCava, J. & Tollervey, D. RNA-quality control by the exosome. Nature Rev. Mol. Cell Biol. 7, 529–539 (2006).

    CAS  Google Scholar 

  68. Green, D. M., Johnson, C. P., Hagan, H. & Corbett, A. H. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl Acad. Sci. USA 100, 1010–1015 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004). Identifies a retention mechanism for intron-containing mRNAs in the nucleus.

    CAS  PubMed  Google Scholar 

  70. Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Segref, A. et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16, 3256–3271 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Grüter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998). References 71 and 72 identify Mex67 in yeast and TAP in metazoa as the general mRNA export receptor.

    PubMed  Google Scholar 

  73. Neville, M. & Rosbash, M. The NES–Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J. 18, 3746–3756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clouse, K. N., Luo, M. J., Zhou, Z. & Reed, R. A Ran-independent pathway for export of spliced mRNA. Nature Cell Biol. 3, 97–99 (2001).

    CAS  PubMed  Google Scholar 

  75. Gallouzi, I. E. & Steitz, J. A. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294, 1895–1901 (2001).

    CAS  PubMed  Google Scholar 

  76. Dong, S. et al. YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol. Cell 25, 559–573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sträßer, K. & Hurt, E. C. Splicing factor Sub2p is required for nuclear export through its interaction with Yra1p. Nature 413, 648–652 (2001).

    PubMed  Google Scholar 

  78. Zenklusen, D., Vinciguerra, P., Wyss, J. C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell. Biol. 22, 8241–8253 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lei, E. P., Krebber, H. & Silver, P. A. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15, 1771–1782 (2001). Presents evidence that mRNA export factors can be recruited to gene loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Koffa, M. D. et al. Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J. 20, 5769–5778 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Caceres, J. F., Screaton, G. R. & Krainer, A. R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, Y., Gattoni, R., Stevenin, J. & Steitz, J. A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    CAS  PubMed  Google Scholar 

  84. Yun, C. Y. & Fu, X. D. Conserved SR protein kinase functions in nuclear import and its action is counteracted by arginine methylation in Saccharomyces cerevisiae. J. Cell Biol. 150, 707–717 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gilbert, W. & Guthrie, C. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212 (2004). Evidence that a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of SR proteins can regulate mRNA export.

    CAS  PubMed  Google Scholar 

  86. Gilbert, W., Siebel, C. W. & Guthrie, C. Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA Publ. RNA Soc. 7, 302–313 (2001).

    CAS  Google Scholar 

  87. Lei, E. P. & Silver, P. A. Intron status and 3′-end formation control cotranscriptional export of mRNA. Genes Dev. 16, 2761–2766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sträßer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002). Reports the identification of a complex with key functions in coupling transcription to mRNA export.

    PubMed  Google Scholar 

  89. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nature Struct. Mol. Biol. 11, 558–566 (2004).

    CAS  Google Scholar 

  90. Masuda, S. et al. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 19, 1512–1517 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).

    PubMed  PubMed Central  Google Scholar 

  92. Jimeno, S., Rondon, A. G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Abruzzi, K. C., Lacadie, S. & Rosbash, M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J. 23, 2620–2631 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003). Shows that THO/TREX prevents RNA–DNA hybrid formation during transcript elongation, thus allowing efficient transcription of long genes.

    CAS  PubMed  Google Scholar 

  95. Hurt, E., Luo, M. J., Rother, S., Reed, R. & Strasser, K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl Acad. Sci. USA 101, 1858–1862 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jensen, T. H. et al. Modulation of transcription affects mRNP quality. Mol. Cell 16, 235–244 (2004).

    CAS  PubMed  Google Scholar 

  97. Luo, M.-J. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).

    CAS  PubMed  Google Scholar 

  98. Zhou, Z. L. et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401–405 (2000).

    CAS  PubMed  Google Scholar 

  99. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kataoka, N., Diem, M. D., Kim, V. N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon–exon junction complex. EMBO J. 20, 6424–6433 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127, 1389–1400 (2006).

    CAS  PubMed  Google Scholar 

  102. Visa, N. et al. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84, 253–264 (1996).

    CAS  PubMed  Google Scholar 

  103. Yoh, S. M., Cho, H., Pickle, L., Evans, R. M. & Jones, K. A. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 21, 160–174 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fischer, T. et al. The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lei, P. et al. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell 14, 836–847 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004). Identifies Sus1 as component of the NPC-located TREX-2 and SAGA transcriptional co-activator.

    CAS  PubMed  Google Scholar 

  107. Fischer, T. et al. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nature Cell Biol. 6, 840–848 (2004).

    CAS  PubMed  Google Scholar 

  108. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. Nab2p and the Thp1p–Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232 (2003).

    CAS  PubMed  Google Scholar 

  109. Shukla, A., Stanojevic, N., Duan, Z., Sen, P. & Bhaumik, S. R. Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol. Cell. Biol. 26, 3339–3352 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kohler, A. et al. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol. Biol. Cell 17, 4228–4236 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet. 8, 507–517 (2007).

    CAS  PubMed  Google Scholar 

  112. Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985). A pioneering paper that anticipated current concepts about the functional connection between nuclear gene positioning, gene expression and mRNA export.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Brown, C. R. & Silver, P. A. Transcriptional regulation at the nuclear pore complex. Curr. Opin. Genet. Dev. 17, 100–106 (2007).

    CAS  PubMed  Google Scholar 

  114. Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004). Expression of the INO1 gene is shown to require contact with the nuclear periphery.

    PubMed  PubMed Central  Google Scholar 

  115. Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006). Together with reference 118 this paper shows that gene activation correlates with relocalization to the nuclear periphery.

    CAS  PubMed  Google Scholar 

  116. Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004). Demonstrates an association of several NPC proteins with a number of genes, suggesting a link between gene expression and the NPC.

    CAS  PubMed  Google Scholar 

  118. Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).

    CAS  PubMed  Google Scholar 

  119. Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7858–7870 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282, 3042–3049 (2007).

    CAS  PubMed  Google Scholar 

  121. Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    PubMed  PubMed Central  Google Scholar 

  122. Menon, B. B. et al. Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc. Natl Acad. Sci. USA 102, 5749–5754 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast. The nuclear pore connection. Cell 109, 551–562 (2002).

    CAS  PubMed  Google Scholar 

  124. Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21, 379–391 (2006).

    CAS  PubMed  Google Scholar 

  125. Abruzzi, K. C., Belostotsky, D. A., Chekanova, J. A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J. 25, 4253–4262 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292 (2004).

    CAS  PubMed  Google Scholar 

  127. Tseng, S. S. L. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998). Together with reference 128, this paper shows that Dbp5 is an ATP-dependent RNA helicase required for mRNA export.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1–1 cells. EMBO J. 18, 5778–5788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).

    CAS  PubMed  Google Scholar 

  131. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    CAS  PubMed  Google Scholar 

  133. Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  134. Alcazar-Roman, A. R., Tran, E. J., Guo, S. & Wente, S. R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature Cell Biol. 8, 711–716 (2006). References 133 and 134 show that Dbp5 is selectively activated on the cytoplasmic side of the NPC to catalyse a terminal step of mRNA export.

    CAS  PubMed  Google Scholar 

  135. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).

    CAS  PubMed  Google Scholar 

  136. Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 25, 327–330 (2007).

    CAS  PubMed  Google Scholar 

  137. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol. 14, 313–318 (2002).

    CAS  PubMed  Google Scholar 

  138. Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003).

    CAS  PubMed  Google Scholar 

  139. Fromont-Racine, M., Senger, B., Saveanu, C. & Fasiolo, F. Ribosome assembly in eukaryotes. Gene 313, 17–42 (2003).

    CAS  PubMed  Google Scholar 

  140. Moy, T. I. & Silver, P. A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 13, 2118–2133 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferreira-Cerca, S., Poll, G., Gleizes, P. E., Tschochner, H. & Milkereit, P. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol. Cell 20, 263–275 (2005).

    CAS  PubMed  Google Scholar 

  142. Schäfer, T., Strauß, D., Petfalski, E., Tollervey, D. & Hurt, E. C. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).

    PubMed  PubMed Central  Google Scholar 

  143. Rouquette, J., Choesmel, V. & Gleizes, P. E. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 24, 2862–2872 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hurt, E. et al. A novel in vivo assay reveals inhibition of ribosomal nuclear export in Ran-cycle and nucleoporin mutants. J. Cell Biol. 144, 389–401 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Stage-Zimmermann, T., Schmidt, U. & Silver, P. A. Factors affecting nucler export of the 60S subunits in vivo. Mol. Biol. Cell 11, 3777–3789 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ho, J. H. N., Kallstrom, G. & Johnson, A. W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J.Cell Biol. 151, 1057–1066 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gadal, O. et al. Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a NES-containing factor Nmd3p that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21, 3405–3415 (2001). References 146 and 147 identify Nmd3 as an adaptor for Crm1–RanGTP-mediated 60S subunit export.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Thomas, F. & Kutay, U. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J. Cell Sci. 116, 2409–2419 (2003).

    CAS  PubMed  Google Scholar 

  149. Trotta, C. R., Lund, E., Kahan, L., Johnson, A. W. & Dahlberg, J. E. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J. 22, 2841–2851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Nissan, T. A., Baßler, J., Petfalski, E., Tollervey, D. & Hurt, E. C. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21, 5539–5547 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. West, M., Hedges, J. B., Chen, A. & Johnson, A. W. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol. Cell. Biol. 25, 3802–3813 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Hedges, J., West, M. & Johnson, A. W. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24, 567–579 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yao, W. et al. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67–Mtr2. Mol. Cell 26, 51–62 (2007). Demonstrates an unexpected role for the mRNA export receptor in the export of the large ribosomal subunit.

    CAS  PubMed  Google Scholar 

  154. Lebreton, A. et al. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173, 349–360 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hung, N. J. & Johnson, A. W. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3718–3727 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Belaya, K., Tollervey, D. & Kos, M. FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins. RNA 12, 921–930 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bradatsch, B. et al. Arx1 functions as an unorthodox nuclear export receptor for the 60S pre-ribosomal subunit. Mol. Cell (in the press).

  158. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    CAS  Google Scholar 

  159. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    CAS  PubMed  Google Scholar 

  162. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  163. Bayliss, R. et al. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J. 21, 2843–2853 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge critical reading of the manuscript by the members of the Hurt laboratory and by S. Hauf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Components involved in RNA export (PDF 162 kb)

Related links

Related links

FURTHER INFORMATION

Ed Hurt's homepage

Glossary

Signal recognition particle 7S RNA

The signal recognition particle is an evolutionarily conserved RNA–protein complex that contains a 7S RNA species and targets integral membrane and secretory proteins to the translocation machinery of the endoplasmic reticulum.

5′ cap

A structure at the 5′ end of eukaryotic mRNAs that consists of the m7GpppN cap (in which m7G represents 7-methylguanylate and ppp represents an unusual 5′→5′ triphosphate linkage from m7G to N, which is the first regular nucleotide of the mRNA).

P bodies

(Processing bodies). Discrete cytoplasmic foci that are sites of degradation and surveillance of mRNAs and RNA-mediated gene silencing.

Short hairpin RNA

Artificially generated, usually vector-encoded, RNA that resembles pre-miRNA in structure and is used to experimentally induce RNA interference.

Small interfering RNA

(siRNA). Short double-stranded RNA fragment of 22 nucleotides that is derived from longer double-stranded short hairpin RNA. siRNAs guide silencing complexes to their targets by base pairing with specific mRNA sequences.

Survival of motor neurons (SMN) complex

A large multiprotein complex that brings together the Sm proteins and small nuclear RNAs, thereby facilitating small nuclear ribonucleoprotein assembly.

Sm proteins

A set of seven proteins that are arranged as a ring structure on a specific small nuclear RNA-binding site to become part of spliceosomal small nuclear ribonucleoproteins.

AU-rich element

A motif that is located in the 3′-untranslated region of some mRNAs and that can induce rapid mRNA decay.

SR (Ser/Arg-rich) proteins

An abundant class of proteins that are involved in various aspects of mRNA metabolism. They contain one or two RNA-recognition motifs and an Arg/Ser-rich domain that can be phosphorylated at multiple positions.

Exon-junction complex

(EJC). A complex of proteins that is deposited onto mRNA during pre-mRNA splicing (20–24 nucleotides upstream of exon–exon junctions). The EJC remains bound to the mRNA during nuclear export and influences surveillance, translation and localization of mature mRNAs in the cytoplasm.

Nonsense-mediated mRNA decay

(NMD). A process by which a cell destroys mRNAs for which translation has been prematurely terminated owing to the presence of a nonsense codon in the coding region.

Inositol hexakisphosphate

(InsP6). One of many small messenger phosphoinositides that is found in cells. InsP6 is synthesized by IPK1 from inositol 1,4,5-trisphosphate (InsP3), a precursor that also regulates the release of intracellular calcium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, A., Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8, 761–773 (2007). https://doi.org/10.1038/nrm2255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing