Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Metabolic cycles as an underlying basis of biological oscillations

Abstract

The evolutionary origins of periodic phenomena in biology, such as the circadian cycle, the hibernation cycle and the sleep–wake cycle, remain a mystery. We discuss the concept of temporal compartmentalization of metabolism that takes place during such cycles, and suggest that cyclic changes in a cell's metabolic state might be a fundamental driving force for such biological oscillations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Robust cycles during yeast growth, hibernation and sleep.
Figure 2: Metabolism during the reductive, charging phase of the yeast metabolic cycle.

Similar content being viewed by others

References

  1. Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).

    Article  CAS  Google Scholar 

  2. Claridge-Chang, A. et al. Circadian regulation of gene expression systems in the Drosophila head. Neuron 32, 657–671 (2001).

    Article  CAS  Google Scholar 

  3. McDonald, M. J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  Google Scholar 

  4. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  5. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    Article  CAS  Google Scholar 

  6. Chance, B., Estabrook, R. W. & Ghosh, A. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl Acad. Sci. USA 51, 1244–1251 (1964).

    Article  CAS  Google Scholar 

  7. Chance, B., Schoener, B. & Elsaesser, S. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc. Natl Acad. Sci. USA 52, 337–341 (1964).

    Article  CAS  Google Scholar 

  8. Ghosh, A. & Chance, B. Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 16, 174–181 (1964).

    Article  CAS  Google Scholar 

  9. Hommes, F. A. Oscillatory reductions of pyridine nucleotides during anaerobic glycolysis in brewers' yeast. Arch. Biochem. Biophys. 108, 36–46 (1964).

    Article  CAS  Google Scholar 

  10. von Meyenburg, H. K. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch. Microbiol. 66, 289–303 (1969).

    CAS  Google Scholar 

  11. Satroutdinov, A. D., Kuriyama, H. & Kobayashi, H. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 77, 261–267 (1992).

    Article  CAS  Google Scholar 

  12. Klevecz, R. R., Bolen, J., Forrest, G. & Murray, D. B. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl Acad. Sci. USA 101, 1200–1205 (2004).

    Article  CAS  Google Scholar 

  13. Sillje, H. H. et al. Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J. Bacteriol. 179, 6560–6565 (1997).

    Article  CAS  Google Scholar 

  14. Muller, D., Exler, S., Aguilera-Vazquez, L., Guerrero-Martin, E. & Reuss, M. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20, 351–367 (2003).

    Article  CAS  Google Scholar 

  15. Lloyd, D. & Murray, D. B. Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem. Sci. 30, 373–377 (2005).

    Article  CAS  Google Scholar 

  16. Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331 (2002).

    Article  CAS  Google Scholar 

  17. Johnson, C. H. Endogenous timekeepers in photosynthetic organisms. Annu. Rev. Physiol. 63, 695–728 (2001).

    Article  CAS  Google Scholar 

  18. Golden, S. S. & Canales, S. R. Cyanobacterial circadian clocks — timing is everything. Nature Rev. Microbiol. 1, 191–199 (2003).

    Article  CAS  Google Scholar 

  19. Mitsui, A. et al. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323, 720–722 (1986).

    Article  CAS  Google Scholar 

  20. Huang, T.-C., Tu, J., Chow, T. J. & Chen, T.-H. Circadian rhythm of the prokaryote Synechocoocus sp. RF-1. Plant Physiol. 92, 531–533 (1990).

    Article  CAS  Google Scholar 

  21. Gehring, W. & Rosbash, M. The coevolution of blue-light photoreception and circadian rhythms. J. Mol. Evol. 57 (Suppl. 1), S286–S289 (2003).

    Article  CAS  Google Scholar 

  22. Lowrey, P. L. & Takahashi, J. S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407–441 (2004).

    Article  CAS  Google Scholar 

  23. Schwartz, W. J. & Gainer, H. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197, 1089–1091 (1977).

    Article  CAS  Google Scholar 

  24. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  Google Scholar 

  25. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    Article  CAS  Google Scholar 

  26. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001).

    Article  CAS  Google Scholar 

  27. Dioum, E. M. et al. NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387 (2002).

    Article  CAS  Google Scholar 

  28. Mori, T., Binder, B. & Johnson, C. H. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl Acad. Sci. USA 93, 10183–10188 (1996).

    Article  CAS  Google Scholar 

  29. Kondo, T. et al. Circadian rhythms in rapidly dividing cyanobacteria. Science 275, 224–227 (1997).

    Article  CAS  Google Scholar 

  30. Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003).

    Article  CAS  Google Scholar 

  31. Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004).

    Article  CAS  Google Scholar 

  32. Van Breukelen, F. & Martin, S. L. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).

    Article  CAS  Google Scholar 

  33. Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).

    Article  CAS  Google Scholar 

  34. Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).

    Article  CAS  Google Scholar 

  35. Heller, H. C. & Ruby, N. F. Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66, 275–289 (2004).

    Article  CAS  Google Scholar 

  36. Storey, K. B. Mammalian hibernation. Transcriptional and translational controls. Adv. Exp. Med. Biol. 543, 21–38 (2003).

    Article  CAS  Google Scholar 

  37. Epperson, L. E., Dahl, T. A. & Martin, S. L. Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel. Mol. Cell. Proteomics 3, 920–933 (2004).

    Article  CAS  Google Scholar 

  38. Williams, D. R. et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24, 13–22 (2005).

    Article  Google Scholar 

  39. Martin, S. L., Maniero, G. D., Carey, C. & Hand, S. C. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Physiol. Biochem. Zool. 72, 255–264 (1999).

    Article  CAS  Google Scholar 

  40. Inoue, S., Honda, K. & Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain Res. 69, 91–96 (1995).

    Article  CAS  Google Scholar 

  41. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    Article  CAS  Google Scholar 

  42. Kong, J. et al. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 5581–5587 (2002).

    Article  CAS  Google Scholar 

  43. Zimmerman, J. E. et al. Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J. Neurochem. 88, 32–40 (2004).

    Article  CAS  Google Scholar 

  44. Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 (2004).

    Article  CAS  Google Scholar 

  45. Ikeda, M. et al. Brain oxidation is an initial process in sleep induction. Neuroscience 130, 1029–1040 (2005).

    Article  CAS  Google Scholar 

  46. Beuckmann, C. T. & Yanagisawa, M. Orexins: from neuropeptides to energy homeostasis and sleep/wake regulation. J. Mol. Med. 80, 329–342 (2002).

    Article  CAS  Google Scholar 

  47. Mieda, M. & Yanagisawa, M. Sleep, feeding, and neuropeptides: roles of orexins and orexin receptors. Curr. Opin. Neurobiol. 12, 339–345 (2002).

    Article  CAS  Google Scholar 

  48. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  Google Scholar 

  49. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  Google Scholar 

  50. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  Google Scholar 

  51. Franken, P. et al. NPAS2 as a transcriptional regulator of non-REM sleep: genotype and sex interactions. Proc. Natl Acad. Sci. USA 103, 7118–7123 (2006).

    Article  CAS  Google Scholar 

  52. Onai, K. & Nakashima, H. Mutation of the cys-9 gene, which encodes thioredoxin reductase, affects the circadian conidiation rhythm in Neurospora crassa. Genetics 146, 101–110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    Article  CAS  Google Scholar 

  54. Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Martin, E. Epperson, P. Franken and R. Greene for valuable input on hibernation and sleep. This work is supported by an NIH grant, an NIH Director's Pioneer Award, unrestricted funds from an anonymous donor (S.L.M.), and a Helen Hay Whitney Foundation Postdoctoral Fellowship (B.P.T.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Steven L. McKnight's homepage

Steven L. McKnight's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, B., McKnight, S. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7, 696–701 (2006). https://doi.org/10.1038/nrm1980

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing