Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The replication clamp-loading machine at work in the three domains of life

Key Points

  • Processive DNA polymerases that replicate chromosomes interact with a ring-shaped clamp that encircles DNA and slides along the duplex.

  • All sliding clamps (Escherichia coli β-clamp, T4 bacteriophage gp45, archaeal and eukaryotic proliferating cell nuclear antigen (PCNA)) form similar planar ring structures with a central channel of sufficient width to encircle duplex DNA.

  • In all the clamps, the two faces of the ring are structurally distinct and polymerases and clamp loaders compete for binding to the same face. Therefore, the clamp loader must depart from the clamp for the DNA polymerase to function.

  • The sliding clamp is loaded onto DNA by a clamp-loader complex driven by ATP. Clamp loaders are circular heteropentameric complexes that have been conserved throughout evolution and their subunits are members of the AAA+ (ATPases associated with a variety of cellular activities) family of ATPases.

  • The ATP-binding sites of clamp loaders are located at subunit interfaces. Although clamp loaders are very similar in structure and function, the specifics of ATP use varies among different replication systems.

  • Insights into the way clamp loaders bind to DNA, recognize a primer–template junction, and open the clamp have been revealed by recent structural and biochemical studies. The findings of these studies indicate that the clamp assumes a right-handed spiral configuration when it opens, and it docks onto the helical surface of the clamp loader.

Abstract

Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, which enables the rapid and processive synthesis of both leading and lagging strands at the replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors onto primed sites at the replication fork. Recent structural and biochemical analyses provide unique insights into how these clamp-loading ATPase machines function to load clamps onto the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-loading process in the three domains of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sliding clamps of different organisms.
Figure 2: The Escherichia coli γ clamp-loader complex.
Figure 3: The gp45 clamp and the gp44/62 clamp loader of bacteriophage T4.
Figure 4: The eukaryotic RFC–PCNA binary complex.
Figure 5: The archaeal RFC–PCNA–DNA ternary complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Johnson, A. & O'Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Warbrick, E. The puzzle of PCNA's many partners. Bioessays 22, 997–1006 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Miyata, T. et al. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc. Natl Acad. Sci. USA 102, 13795–13800 (2005). The EM structure of an archaeal RFC–PCNA–DNA complex in the presence of ATPγS shows the clamp in an open state. The open PCNA has a lock-washer conformation and fits onto the AAA+ surface of RFC. Density that probably corresponds to DNA is observed in the centre of PCNA and in the central chamber of RFC. The complex might represent an intermediate in which PCNA is kept open before ATP hydrolysis by RFC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowman, G. D., O'Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex. Nature 429, 724–730 (2004). The S. cerevisiae RFC–PCNA–ATPγS structure indicates a mechanism for DNA engagement by the AAA+ clamp-loader assembly. The ATPase domains of RFC are arranged in a right-handed spiral that complements the structure of dsDNA modelled inside. The PCNA lies below the RFC spiral in a closed conformation, which indicates that ring closure might precede hydrolysis of ATP.

    Google Scholar 

  6. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Crystal structure of the processivity clamp loader gamma (γ) complex of E. coli DNA polymerase III. Cell 106, 429–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Jeruzalmi, D. et al. Mechanism of processivity clamp opening by the δ subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106, 417–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Trakselis, M. A. & Benkovic, S. J. Intricacies in ATP-dependent clamp loading: variations across replication systems. Structure 9, 999–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kong, X. P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Moarefi, I., Jeruzalmi, D., Turner, J., O'Donnell, M. & Kuriyan, J. Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J. Mol. Biol. 296, 1215–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87, 297–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Matsumiya, S., Ishino, Y. & Morikawa, K. Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci. 10, 17–23 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cullmann, G., Fien, K., Kobayashi, R. & Stillman, B. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 4661–4671 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kornberg, A. & Baker, T. A. DNA Replication 2nd edn (WH Freeman and Company, New York, 1992).

    Google Scholar 

  16. Pritchard, A. E., Dallmann, H. G., Glover, B. P. & McHenry, C. S. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3δδ′. EMBO J. 19, 6536–6545 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flower, A. M. & McHenry, C. S. The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc. Natl Acad. Sci. USA 87, 3713–3717 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsuchihashi, Z. & Kornberg, A. Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc. Natl Acad. Sci. USA 87, 2516–2520 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blinkowa, A. L. & Walker, J. R. Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit from within the τ subunit reading frame. Nucleic Acids Res. 18, 1725–1729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dallmann, H. G., Kim, S., Pritchard, A. E., Marians, K. J. & McHenry, C. S. Characterization of the unique C terminus of the Escherichia coli τ DnaX protein. Monomeric C-τ binds α and DnaB and can partially replace τ in reconstituted replication forks. J. Biol. Chem. 275, 15512–15519 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Gao, D. & McHenry, C. S. τ binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged τ to determine candidate domains and to assign domain V as the α binding domain. J. Biol. Chem. 276, 4433–4440 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a τ–DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996). Shows that the E. coli replicase couples to the helicase through mutual connection to the τ-subunit of the clamp loader. The interaction leads to the dramatically increased speed of helicase-mediated unwinding of DNA.

    Article  CAS  PubMed  Google Scholar 

  23. Yuzhakov, A., Turner, J. & O'Donnell, M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86, 877–886 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Onrust, R. & O'Donnell, M. DNA polymerase III accessory proteins. II. Characterization of δ and δ′. J. Biol. Chem. 268, 11766–11772 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Pritchard, A. E., Dallmann, H. G. & McHenry, C. S. In vivo assembly of the τ-complex of the DNA polymerase III holoenzyme expressed from a five-gene artificial operon. Cleavage of the τ-complex to form a mixed γ–τ-complex by the OmpT protease. J. Biol. Chem. 271, 10291–10298 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Gulbis, J. M. et al. Crystal structure of the χ:π sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur. J. Biochem. 271, 439–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Glover, B. P. & McHenry, C. S. The χπ subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J. Biol. Chem. 273, 23476–23484 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Yuzhakov, A., Kelman, Z. & O'Donnell, M. Trading places on DNA — a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96, 153–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Jeruzalmi, D. The opened processivity clamp slides into view. Proc. Natl Acad. Sci. USA 102, 14939–14940 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, R. C., Hanson, P. I., Jahn, R. & Brunger, A. T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Turner, J., Hingorani, M. M., Kelman, Z. & O'Donnell, M. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18, 771–783 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naktinis, V., Onrust, R., Fang, L. & O'Donnell, M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J. Biol. Chem. 270, 13358–13365 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Bertram, J. G. et al. Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when γ complex loads β on DNA. J. Biol. Chem. 275, 28413–28420 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ason, B. et al. A model for Escherichia coli DNA polymerase III holoenzyme assembly at primer/template ends. DNA triggers a change in binding specificity of the γ complex clamp loader. J. Biol. Chem. 275, 3006–3015 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ason, B. et al. Mechanism of loading the Escherichia coli DNA polymerase III β sliding clamp on DNA. Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J. Biol. Chem. 278, 10033–10040 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Indiani, C. & O'Donnell, M. Mechanism of the δ wrench in opening the β sliding clamp. J. Biol. Chem. 278, 40272–40281 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kazmirski, S. L., Podobnik, M., Weitze, T. F., O'Donnell, M. & Kuriyan, J. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc. Natl Acad. Sci. USA 101, 16750–16755 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsuchihashi, Z. & Kornberg, A. ATP interactions of the τ and γ subunits of DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 264, 17790–17795 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, A. & O'Donnell, M. Ordered ATP hydrolysis in the γ complex clamp loader AAA+ machine. J. Biol. Chem. 278, 14406–14413 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M. & Bloom, L. B. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the β and DNA binding activities of the γ complex. J. Biol. Chem. 279, 4386–4393 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M. & Bloom, L. B. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the γ complex. J. Biol. Chem. 279, 4376–4385 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Glover, B. P. & McHenry, C. S. The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 105, 925–934 (2001). This study shows, by using ATPγS, that the two polymerases in the E. coli holoenzyme are functionally distinct. The structurally asymmetric clamp loader to which they are both attached probably imposes the unique properties.

    Article  CAS  PubMed  Google Scholar 

  44. McHenry, C. S. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol. Microbiol. 49, 1157–1165 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. τ protects β in the leading-strand polymerase complex at the replication fork. J. Biol. Chem. 271, 4315–4318 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. von Hippel, P. H. The recombination–replication interface. Trends Biochem. Sci. 25, 155 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nossal, N. G. Protein–protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J. 6, 871–878 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Sexton, D. J., Berdis, A. J. & Benkovic, S. J. Assembly and disassembly of DNA polymerase holoenzyme. Curr. Opin. Chem. Biol. 1, 316–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Shamoo, Y. & Steitz, T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99, 155–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Jarvis, T. C., Paul, L. S. & von Hippel, P. H. Structural and enzymatic studies of the T4 DNA replication system. I. Physical characterization of the polymerase accessory protein complex. J. Biol. Chem. 264, 12709–12716 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Millar, D., Trakselis, M. A. & Benkovic, S. J. On the solution structure of the T4 sliding clamp (gp45). Biochemistry 43, 12723–12727 (2004). FRET analysis is used to show that the T4 clamp exists in an asymmetric open state in solution.

    Article  CAS  PubMed  Google Scholar 

  52. Jarvis, T. C., Paul, L. S., Hockensmith, J. W. & von Hippel, P. H. Structural and enzymatic studies of the T4 DNA replication system. II. ATPase properties of the polymerase accessory protein complex. J. Biol. Chem. 264, 12717–12729 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Young, M. C., Weitzel, S. E. & von Hippel, P. H. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp. J. Mol. Biol. 264, 440–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Rush, J. et al. The 44P subunit of the T4 DNA polymerase accessory protein complex catalyzes ATP hydrolysis. J. Biol. Chem. 264, 10943–10953 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Berdis, A. J. & Benkovic, S. J. Role of adenosine 5′-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Biochemistry 35, 9253–9265 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly. Biochemistry 39, 3076–3090 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Latham, G. J., Pietroni, P., Dong, F., Young, M. C. & von Hippel, P. H. Fluorescence monitoring of T4 polymerase holoenzyme accessory protein interactions during loading of the sliding clamp onto the template–primer junction. J. Mol. Biol. 264, 426–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Sexton, D. J., Carver, T. E., Berdis, A. J. & Benkovic, S. J. Protein–protein and protein–DNA interactions at the bacteriophage T4 DNA replication fork. Characterization of a fluorescently labeled DNA polymerase sliding clamp. J. Biol. Chem. 271, 28045–28051 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Sexton, D. J., Kaboord, B. F., Berdis, A. J., Carver, T. E. & Benkovic, S. J. Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly. Biochemistry 37, 7749–7756 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Trakselis, M. A., Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 8368–8375 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trakselis, M. A., Berdis, A. J. & Benkovic, S. J. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. J. Mol. Biol. 326, 435–451 (2003). This study shows that the T4 clamp loader loads the clamp onto DNA through the sequential hydrolysis of two ATP before and two ATP after the addition of DNA. The final holoenzyme complex is formed upon departure of the clamp loader from this complex.

    Article  CAS  PubMed  Google Scholar 

  62. Pietroni, P., Young, M. C., Latham, G. J. & von Hippel, P. H. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. I. Conformational changes within the gp44/62–gp45–ATP complex during clamp loading. J. Biol. Chem. 272, 31666–31676 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Trakselis, M. A., Roccasecca, R. M., Yang, J., Valentine, A. M. & Benkovic, S. J. Dissociative properties of the proteins within the bacteriophage T4 replisome. J. Biol. Chem. 278, 49839–49849 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Capson, T. L., Benkovic, S. J. & Nossal, N. G. Protein–DNA cross-linking demonstrates stepwise ATP-dependent assembly of T4 DNA polymerase and its accessory proteins on the primer–template. Cell 65, 249–258 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Hockensmith, J. W., Kubasek, W. L., Evertsz, E. M., Mesner, L. D. & von Hippel, P. H. Laser cross-linking of proteins to nucleic acids. II. Interactions of the bacteriophage T4 DNA replication polymerase accessory proteins complex with DNA. J. Biol. Chem. 268, 15721–15730 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Alley, S. C. et al. Building a replisome solution structure by elucidation of protein–protein interactions in the bacteriophage T4 DNA polymerase holoenzyme. J. Biol. Chem. 276, 39340–39349 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Berdis, A. J. & Benkovic, S. J. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Biochemistry 36, 2733–2743 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Latham, G. J., Bacheller, D. J., Pietroni, P. & von Hippel, P. H. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. J. Biol. Chem. 272, 31685–31692 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Latham, G. J., Bacheller, D. J., Pietroni, P. & von Hippel, P. H. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. II. The gp44/62 clamp loader interacts with a single defined face of the sliding clamp ring. J. Biol. Chem. 272, 31677–31684 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Reddy, M. K., Weitzel, S. E. & von Hippel, P. H. Assembly of a functional replication complex without ATP hydrolysis: a direct interaction of bacteriophage T4 gp45 with T4 DNA polymerase. Proc. Natl Acad. Sci. USA 90, 3211–3215 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garg, P. & Burgers, P. M. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40, 115–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Mossi, R., Jonsson, Z. O., Allen, B. L., Hardin, S. H. & Hubscher, U. Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen. J. Biol. Chem. 272, 1769–1776 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Oku, T. et al. Functional sites of human PCNA which interact with p21Cip1/Waf1, DNA polymerase δ and replication factor C. Genes Cells 3, 357–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Uhlmann, F., Gibbs, E., Cai, J., O'Donnell, M. & Hurwitz, J. Identification of regions within the four small subunits of human replication factor C required for complex formation and DNA replication. J. Biol. Chem. 272, 10065–10071 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Bunz, F., Kobayashi, R. & Stillman, B. cDNAs encoding the large subunit of human replication factor C. Proc. Natl Acad. Sci. USA 90, 11014–11018 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gomes, X. V. & Burgers, P. M. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J. Biol. Chem. 276, 34768–34775 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Gomes, X. V., Gary, S. L. & Burgers, P. M. Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. J. Biol. Chem. 275, 14541–14549 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Green, C. M., Erdjument-Bromage, H., Tempst, P. & Lowndes, N. F. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lindsey-Boltz, L. A., Bermudez, V. P., Hurwitz, J. & Sancar, A. Purification and characterization of human DNA damage checkpoint Rad complexes. Proc. Natl Acad. Sci. USA 98, 11236–11241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bellaoui, M. et al. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22, 4304–4313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ben-Aroya, S., Koren, A., Liefshitz, B., Steinlauf, R. & Kupiec, M. ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc. Natl Acad. Sci. USA 100, 9906–9911 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kanellis, P., Agyei, R. & Durocher, D. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13, 1583–1595 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ellison, V. & Stillman, B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1, E33 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zou, L., Liu, D. & Elledge, S. J. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl Acad. Sci. USA 100, 13827–13832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Majka, J. & Burgers, P. M. The PCNA–RFC families of DNA clamps and clamp loaders. Prog. Nucleic Acid Res. Mol. Biol. 78, 227–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Bylund, G. O. & Burgers, P. M. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol. Cell. Biol. 25, 5445–5455 (2005). This study shows that the Ctf18–RFC complex is extremely efficient in removing PCNA from DNA, which indicates that it might recycle clamps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yao, N. Y., Johnson, A., Bowman, G., Kuriyan, J. & O'Donnell, M. Mechanism of PCNA clamp opening by RFC. J. Biol. Chem. 281, 17528–17539 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Fotedar, R. et al. A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. EMBO J. 15, 4423–4433 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burgers, P. M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ε. J. Biol. Chem. 266, 22698–22706 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Hingorani, M. M. & O'Donnell, M. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 273, 24550–24563 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, S. H. & Hurwitz, J. Mechanism of elongation of primed DNA by DNA polymerase δ, proliferating cell nuclear antigen, and activator 1. Proc. Natl Acad. Sci. USA 87, 5672–5676 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsurimoto, T. & Stillman, B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer–template junction by eukaryotic DNA polymerases and their accessory proteins. J. Biol. Chem. 266, 1950–1960 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Gomes, X. V., Schmidt, S. L. & Burgers, P. M. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J. Biol. Chem. 276, 34776–34783 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Schmidt, S. L., Gomes, X. V. & Burgers, P. M. ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. J. Biol. Chem. 276, 34784–34791 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kazmirski, S. L., Zhao, Y., Bowman, G. D., O'Donnell, M. & Kuriyan, J. Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Proc. Natl Acad. Sci. USA 102, 13801–13806 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhuang, Z., Yoder, B. L., Burgers, P. M. & Benkovic, S. J. The structure of a ring-opened proliferating cell nuclear antigen–replication factor C complex revealed by fluorescence energy transfer. Proc. Natl Acad. Sci. USA 3, 2546–2551 (2006).

    Article  CAS  Google Scholar 

  99. Goedken, E. R., Kazmirski, S. L., Bowman, G. D., O'Donnell, M. & Kuriyan, J. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nature Struct. Mol. Biol. 12, 183–190 (2005).

    Article  CAS  Google Scholar 

  100. Podust, L. M., Podust, V. N., Sogo, J. M. & Hubscher, U. Mammalian DNA polymerase auxiliary proteins: analysis of replication factor C-catalyzed proliferating cell nuclear antigen loading onto circular double-stranded DNA. Mol. Cell. Biol. 15, 3072–3081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Olsen, G. J. & Woese, C. R. Archaeal genomics: an overview. Cell 89, 991–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Edgell, D. R. & Doolittle, W. F. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Leipe, D. D., Aravind, L. & Koonin, E. V. Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chapados, B. R. et al. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116, 39–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Cann, I. K. et al. Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in archaea. J. Bacteriol. 181, 6591–6599 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. & Bell, S. D. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Cell 11, 275–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Cann, I. K. & Ishino, Y. Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics 152, 1249–1267 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cann, I. K. et al. Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183, 2614–2623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pisani, F. M., De Felice, M., Carpentieri, F. & Rossi, M. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Mol. Biol. 301, 61–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Seybert, A., Scott, D. J., Scaife, S., Singleton, M. R. & Wigley, D. B. Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Nucleic Acids Res. 30, 4329–4338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kelman, Z. & Hurwitz, J. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum δH. J. Biol. Chem. 275, 7327–7336 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Matsumiya, S., Ishino, S., Ishino, Y. & Morikawa, K. Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells 7, 911–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Oyama, T., Ishino, Y., Cann, I. K., Ishino, S. & Morikawa, K. Atomic structure of the clamp loader small subunit from Pyrococcus furiosus. Mol. Cell 8, 455–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Seybert, A., Singleton, M. R., Cook, N., Hall, D. R. & Wigley, D. B. Communication between subunits within an archaeal clamp-loader complex. EMBO J. 25, 2209–2218 (2006). The crystal structure of the hexameric complex formed by the RFC-s from A. fulgidus shows a conformational change that is associated with nucleotide binding. Mutational analysis shows distinct regulatory roles during clamp loading that distinguish the large and the small subunits in the RFC complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mayanagi, K., Miyata, T., Oyama, T., Ishino, Y. & Morikawa, K. Three-dimensional electron microscopy of the clamp loader small subunit from Pyrococcus furiosus. J. Struct. Biol. 134, 35–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Podobnik, M., Weitze, T. F., O'Donnell, M. & Kuriyan, J. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure 11, 253–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Seybert, A. & Wigley, D. B. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J. 23, 1360–1371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Miyata, T. et al. The clamp-loading complex for processive DNA replication. Nature Struct. Mol. Biol. 11, 632–636 (2004).

    Article  CAS  Google Scholar 

  120. Burnouf, D. Y. et al. Structural and biochemical analysis of sliding clamp–ligand interactions suggest a competition between replicative and translesion DNA polymerases. J. Mol. Biol. 335, 1187–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Indiani, C., McInerney, P., Georgescu, R., Goodman, M. F. & O'Donnell, M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Davey, M. J., Jeruzalmi, D., Kuriyan, J. & O'Donnell, M. Motors and switches: AAA+ machines within the replisome. Nature Rev. Mol. Cell. Biol. 3, 826–835 (2002).

    Article  CAS  Google Scholar 

  123. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006). This review describes critical features of the AAA+ domain, provides classifications of the AAA+ modules and discusses the versatility and adaptability of the hexameric AAA+ assembly.

    Article  CAS  PubMed  Google Scholar 

  124. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Neuwald, A. F. Evolutionary clues to eukaryotic DNA clamp-loading mechanisms: analysis of the functional constraints imposed on replication factor C AAA+ ATPases. Nucleic Acids Res. 33, 3614–3628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ′ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Ahmadian, M. R., Stege, P., Scheffzek, K. & Wittinghofer, A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Struct. Biol. 4, 686–689 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Yao and R. Georgescu for their artistic contributions to Figures 1 and 3. The authors are also grateful for a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike O'Donnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1CZD

1GE8

1JR3

1JQL

1PLQ

1SXJ

2POL

FURTHER INFORMATION

Mike O'Donnell's homepage

Glossary

Replicase

A DNA polymerase with accessory subunits, including a clamp and clamp loader, that replicates chromosomal DNA.

Protomers

Subunits from which a larger structure is built.

AAA+ family of ATPases

(ATPases associated with a variety of cellular activities). A large family of functionally divergent proteins that have a region of homology around the ATP sites. They are often used to remodel other macromolecules.

Primase

A specialized RNA polymerase that synthesizes short RNA primers to initiate DNA synthesis by DNA polymerases.

SRC motif

A three-residue motif (serine–arginine–cysteine) that is conserved in clamp-loading subunits and that contains a catalytic arginine residue that is involved in ATP hydrolysis.

FRET

(Fluorescence resonance energy transfer). The transfer of energy from a light-activated fluorophore to a second fluorophore that has a longer excitation wavelength. The efficiency of energy transfer depends on the distance between fluorophores.

Walker A and B motifs

These motifs are found in most ATP-binding proteins. The Walker A region, also known as a P-loop, binds ATP, whereas the Walker B region binds Mg2+. Both are required for ATP hydrolysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indiani, C., O'Donnell, M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 7, 751–761 (2006). https://doi.org/10.1038/nrm2022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing