Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life of a clathrin coat: insights from clathrin and AP structures

Key Points

  • Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. The most widely studied of the various membrane-transport intermediates are clathrin-coated vesicles.

  • By positioning crystal structures of domains of clathrin and auxilin (auxilin links clathrin to the 'unfoldase' Hsc70) in cryo-electron-microscopy maps of clathrin cages that were assembled in the presence of auxilin, molecular explanations have been obtained for how clathrin-coat disassembly might proceed.

  • Many clathrin adaptors, which are defined as proteins that link polymerized clathrin to membranes and their embedded proteins, have different sequences and structures, but have a common architecture that consists of folded domains that are linked by extended, structureless linkers.

  • Structural and biochemical studies on the heterotetrameric adaptor protein complexes (APs), which are the most abundant of all the clathrin adaptors, show how they carry out their numerous and often phosphorylation-regulated functions. These functions include binding protein cargo, phospholipids and clathrin, and coordinating the recruitment of many of the other proteins that are involved in assembling and subsequently disassembling clathrin-coated vesicles.

Abstract

Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin–clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clathrin-cage reconstructions.
Figure 2: The architecture of clathrin.
Figure 3: Molecular details of clathrin interactions.
Figure 4: AP1 and AP2 at high resolution.
Figure 5: AP complexes: binding sites in the appendages and the motifs bound.

Similar content being viewed by others

References

  1. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Traub, L. M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 163, 203–208 (2003). Introduces the concept of and provides a mechanistic explanation for the function of CLASPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanaseki, T. & Kadota, K. The 'vesicle in a basket': a morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ungewickell, E. & Branton, D. Assembly units of clathrin coats. Nature 289, 420–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Vigers, G. P., Crowther, R. A. & Pearse, B. M. Location of the 100 kd–50 kd accessory proteins in clathrin coats. EMBO J. 5, 2079–2085 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vigers, G. P., Crowther, R. A. & Pearse, B. M. Three-dimensional structure of clathrin cages in ice. EMBO J. 5, 529–534 (1986). Presents the first 3D reconstruction of a clathrin barrel, on which all subsequent work has been based.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heuser, J. E. & Keen, J. Deep-etch visualization of proteins involved in clathrin assembly. J. Cell Biol. 107, 877–886 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ybe, J. A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. ter Haar, E., Harrison, S. C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl Acad. Sci. USA 97, 1096–1100 (2000). Describes the molecular details of peptide binding to clathrin using a clathrin-box motif.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miele, A. E., Watson, P. J., Evans, P. R., Traub, L. M. & Owen, D. J. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nature Struct. Mol. Biol. 11, 242–248 (2004).

    Article  CAS  Google Scholar 

  16. Smith, C. J., Grigorieff, N. & Pearse, B. M. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004). References 17 and 18 describe the molecular details of a clathrin coat at 8-Å resolution and provide a molecular explanation for auxilin/HSC70-catalysed clathrin-coat disassembly.

    Article  CAS  PubMed  Google Scholar 

  19. Heymann, J. B. et al. Visualization of the binding of Hsc70 ATPase to clathrin baskets: implications for an uncoating mechanism. J. Biol. Chem. 280, 7156–7161 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Crowther, R. A., Finch, J. T. & Pearse, B. M. On the structure of coated vesicles. J. Mol. Biol. 103, 785–798 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Crowther, R. A. & Pearse, B. M. Assembly and packing of clathrin into coats. J. Cell Biol. 91, 790–797 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Musacchio, A. et al. Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. Mol. Cell 3, 761–770 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C. Y. et al. Clathrin light and heavy chain interface: α-helix binding superhelix loops via critical tryptophans. EMBO J. 21, 6072–6082 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C. Y. & Brodsky, F. M. Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo. J. Biol. Chem. 280, 6109–6117 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Legendre-Guillemin, V. et al. Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J. Biol. Chem. 280, 6101–6108 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Gruschus, J. M. et al. Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. Biochemistry 43, 3111–3119 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Scheele, U. et al. Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Takenaka, I. M., Leung, S. M., McAndrew, S. J., Brown, J. P. & Hightower, L. E. Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J. Biol. Chem. 270, 19839–19844 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Heuser, J. & Steer, C. J. Trimeric binding of the 70-kD uncoating ATPase to the vertices of clathrin triskelia: a candidate intermediate in the vesicle uncoating reaction. J. Cell Biol. 109, 1457–1466 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, C. J. et al. Location of auxilin within a clathrin cage. J. Mol. Biol. 336, 461–471 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Dafforn, T. R. & Smith, C. J. Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Rep. 5, 1046–1052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keen, J. H., Willingham, M. C. & Pastan, I. H. Clathrin coated vesicles: isolation, dissociation and factor dependent reassociation of clathrin baskets. Cell 16, 303–312 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Ahle, S. & Ungewickell, E. Purification and properties of a new clathrin assembly protein. EMBO J. 5, 3143–3149 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaremba, S. & Keen, J. H. Limited proteolytic digestion of coated vesicle assembly polypeptides abolishes reassembly activity. J. Cell. Biochem. 28, 47–58 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Schroder, S. & Ungewickell, E. Subunit interaction and function of clathrin-coated vesicle adaptors from the Golgi and the plasma membrane. J. Biol. Chem. 266, 7910–7918 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Peden, A. A. et al. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J. Cell Biol. 164, 1065–1076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peden, A. A., Rudge, R. E., Lui, W. W. & Robinson, M. S. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J. Cell Biol. 156, 327–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Heldwein, E. E. et al. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl Acad. Sci. USA 101, 14108–14113 (2004). Describes the molecular architecture of AP1 and gives insights into the functional mechanisms of AP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Owen, D. & Evans, P. A structural explanation for the recognition of tyrosine-based endocytic signals. Science 282, 1327–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pauloin, A. & Thurieau, C. The 50 kDa protein subunit of assembly polypeptide (AP) AP-2 adaptor from clathrin-coated vesicles is phosphorylated on threonine-156 by AP-1 and a soluble AP50 kinase which copurifies with the assembly polypeptides. Biochem. J. 296, 409–415 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olusanya, O., Andrews, P. D., Swedlow, J. R. & Smythe, E. Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11, 896–900 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Conner, S. & Schmid, S. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 156, 921–929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Conner, S. D., Schroter, T. & Schmid, S. L. AAK1-mediated μ2 phosphorylation is stimulated by assembled clathrin. Traffic 4, 885–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Jackson, A. P. et al. Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase. J. Cell Biol. 163, 231–236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002). Establishes a role for μ2-subunit phosphorylation in AP2 function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fingerhut, A., von Figura, K. & Honing, S. Binding of AP2 to sorting signals is modulated by AP2 phosphorylation. J. Biol. Chem. 276, 5476–5482 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Ghosh, P. & Kornfeld, S. AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation. J. Cell Biol. 160, 699–708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 79, 336–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Korolchuk, V. & Banting, G. CK2 and GAK/auxilin2 are major protein kinases in clathrin-coated vesicles. Traffic 3, 428–439 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. McPherson, P. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Chung, J. K. et al. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-biphosphate. J. Biol. Chem. 272, 15980–15985 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Padron, D., Wang, Y., Yamamoto, M., Yin, H. & Roth, M. Phosphatidylinositol phosphate 5-kinase Iβ recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J. Cell Biol. 162, 693–701 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaidarov, I., Chen, Q., Falck, J., Reddy, K. & Keen, J. A functional phosphatidylinositol 3,4,5-triphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 α subunit. J. Biol. Chem. 271, 20922–20929 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Gaidarov, I. & Keen, J. H. Phosphoinositide–AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell Biol. 146, 755–764 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaidarov, I., Smith, M. E., Domin, J. & Keen, J. The class II phosphoinositide 3-kinase C2α is activated by clathrin and regulated clathrin-mediated membrane trafficking. Mol. Cell 7, 443–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rohde, G., Wenzel, D. & Haucke, V. A phosphatidylinositol (4,5)-bisphosphate binding site within μ2-adaptin regulates clathrin mediated endocytosis. J. Cell Biol. 158, 209–214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Munro, S. Organelle identity and the targeting of peripheral membrane proteins. Curr. Opin. Cell Biol. 14, 506–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Crottet, P., Meyer, D. M., Rohrer, J. & Spiess, M. ARF1•GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol. Biol. Cell 13, 3672–3682 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Traub, L. M., Ostrom, J. A. & Kornfeld, S. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol. 123, 561–573 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Austin, C., Hinners, I. & Tooze, S. Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J. Biol. Chem. 275, 21862–21869 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Boehm, M., Aguilar, R. C. & Bonifacino, J. S. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J. 20, 6265–6276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robinson, M. S. & Kreis, T. E. Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Cell 69, 129–138 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Wong, D. H. & Brodsky, F. M. 100-kD proteins of Golgi- and trans-Golgi network-associated coated vesicles have related but distinct membrane binding properties. J. Cell Biol. 117, 1171–1179 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Paleotti, O. et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J. Biol. Chem. 280, 21661–21666 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol. 162, 113–124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanabe, K. et al. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol. Biol. Cell 16, 1617–1628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Traub, L. M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Praefcke, G. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Owen, D., Vallis, Y., Noble, M., Hunter, J. & McMahon, H. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell 97, 805–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Traub, L., Downs, M., Westrich, J. & Fremont, D. Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl Acad. Sci. USA 96, 8907–8912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brett, T., Traub, L. & Fremont, D. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Ritter, B. et al. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J. 23, 3701–3710 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nogi, T. et al. Structural basis for the accessory protein recruitment by the γ-adaptin ear domain. Nature Struct. Biol. 9, 527–531 (2002).

    CAS  PubMed  Google Scholar 

  80. Kent, H., McMahon, H., Evans, P., Benmerah, A. & Owen, D. γ-adaptin appendage domain: structure and binding site for eps15 and γ-synergin. Structure 10, 1139–1148 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Mishra, S. K. et al. Dual engagement regulation of protein interactions with the AP-2 adaptor α appendage. J. Biol. Chem. 279, 46191–46203 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Owen, D., Vallis, Y., Pearse, B., McMahon, H. & Evans, P. The structure and function of the β2-adaptin appendage domain. EMBO J. 19, 4216–4227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mishra, S. K. et al. Functional dissection of an AP-2 β2 appendage-binding sequence within the autosomal recessive hypercholesterolemia (ARH) protein. J. Biol. Chem. 280, 19270–19280 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Mills, I. G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160, 213–222 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Miller, G. J., Mattera, R., Bonifacino, J. S. & Hurley, J. H. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nature Struct. Biol. 10, 599–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Collins, B. M., Praefcke, G. J., Robinson, M. S. & Owen, D. J. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nature Struct. Biol. 10, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Duden, R., Allan, V. & Kreis, T. Involvement of β-COP in membrane traffic through the Golgi complex. Trends Cell Biol. 1, 14–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Schledzewski, K., Brinkmann, H. & Mendel, R. R. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 48, 770–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Hoffman, G. R., Rahl, P. B., Collins, R. N. & Cerione, R. A. Conserved structural motifs in intracellular trafficking pathways: structure of the γCOP appendage domain. Mol. Cell 12, 615–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Watson, P. J., Frigerio, G., Collins, B. M., Duden, R. & Owen, D. J. γ-COP appendage domain — structure and function. Traffic 5, 79–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. McMahon, H. T. & Mills, I. G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Eugster, A., Frigerio, G., Dale, M. & Duden, R. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905–3917 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gonzalez, L. J., Weis, W. & Scheller, R. A novel SNARE N-terminal domain revealed by the crystal structure of Sec22b. J. Biol. Chem. 276, 24203–24221 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Tochio, H., Tsui, M., Bandfield, D. & Zhang, M. An autoinhibitory mechanism for non syntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293, 698–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Schwartz, T. & Blobel, G. Structural basis for the function of the β subunit of the eukaryotic signal recognition particle receptor. Cell 112, 793–803 (2003). Provides a possible structural mechanism for the interaction between two widely conserved protein folds — the σ/N-μ2 fold and that of an ARF-family GTPase.

    Article  CAS  PubMed  Google Scholar 

  97. Wilbur, J. D., Hwang, P. K. & Brodsky, F. M. New faces of the familiar clathrin lattice. Traffic 6, 346–350 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

InterPro

clathrin light chain

TDs

Protein Data Bank

1B9K

1BXX

1E42

1GW5

1GYU

1IFQ

1J2J

1KY7

1KYF

1NRJ

1OM9

1W63

1W80

1XI4

FURTHER INFORMATION

David Owen's laboratory

Corinne Smith's laboratory

Glossary

ARH and Dab2

Autosomal recessive hypercholesterolaemia protein (ARH) and Disabled-2 (Dab2) are clathrin adaptors that bind to members of the low density lipoprotein (LDL)-receptor family.

α-helical hairpin

A structural motif that comprises a short α-helix joined to another α-helix by a loop. The helices lie side by side, and the motif can be repeated many times with the hairpins stacking on top of one another to form a twisting helical solenoid.

J domain

A conserved domain that stimulates ATP hydrolysis by chaperones of the 70-kDa heat-shock protein (Hsp70) family. It was first identified in the Escherichia coli co-chaperone DnaJ, but it is also found in DnaJ homologues in eukaryotes, as well as in several co-chaperones that recruit Hsp70 proteins for specific cellular processes.

AP180

(adaptor protein of 180 kDa). AP180 is another clathrin adaptor that is found in clathrin coats, but is not related to the APs (adaptor protein complexes). It is a single-chain clathrin adaptor that is composed of an 30-kDa helical ANTH (AP180 N-terminal homology) domain at its N terminus followed by a large unstructured region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edeling, M., Smith, C. & Owen, D. Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32–44 (2006). https://doi.org/10.1038/nrm1786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing