Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

T-loops and the origin of telomeres

An Addendum to this article was published on 01 June 2004

Abstract

Most eukaryotes stabilize the ends of their linear chromosomes with a telomerase-based system. Telomerase maintains specific repetitive sequences, which protect chromosome ends with the help of telomere-binding proteins. How did this elaborate system evolve? Here, I propose that telomere function was originally mediated by t-loops, which could have been generated by prokaryotic DNA-replication factors. These early telomeres would have required only the presence of a few repeats at chromosome ends. Telomerase could have been a later innovation with specific advantages for telomere function and regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solutions to the end-replication problem.
Figure 2: Proposed structure of the human telomeric complex.
Figure 3: T-loop formation resembles initiation of RDR.
Figure 4: The t-loop-evolution model.

Similar content being viewed by others

References

  1. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Nugent, C. I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lundblad, V. Telomerase catalysis: a phylogenetically conserved reverse transcriptase. Proc. Natl Acad. Sci. USA 95, 8415–8416 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kobryn, K. & Chaconas, G. The circle is broken: telomere resolution in linear replicons. Curr. Opin. Microbiol. 4, 558–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Varmus, H. E. Form and function of retroviral proviruses. Science 216, 812–820 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. de Jong, R. N., van der Vliet, P. C. & Brenkman, A. B. Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr. Top. Microbiol. Immunol. 272, 187–211 (2003).

    CAS  PubMed  Google Scholar 

  7. Biessmann, H. & Mason, J. M. Telomere maintenance without telomerase. Chromosoma 106, 63–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Frydrychova, R. & Marec, F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115, 179–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Kass-Eisler, A. & Greider, C. W. Recombination in telomere-length maintenance. Trends Biochem. Sci. 25, 200–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Natarajan, S. & McEachern, M. J. Recombinational telomere elongation promoted by DNA circles. Mol. Cell. Biol. 22, 4512–4521 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. de Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lustig, A. J. Cdc13 subcomplexes regulate multiple telomere functions. Nature Struct. Biol. 8, 297–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira, M. G., Miller, K. M. & Cooper, J. P. Indecent exposure. When telomeres become uncapped. Mol. Cell 13, 7–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Singer, M. S. & Gottschling, D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Gottschling, D. E. & Zakian, V. A. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47, 195–205 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Stansel, R. M., de Lange, T. & Griffith, J. D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, E5532–5540 (2001).

    Article  Google Scholar 

  23. de Lange, T. & Petrini, J. A new connection at human telomeres: association of the Mre11 complex with TRF2. Cold Spring Harb. Symp. Quant. Biol. LXV, 265–273 (2000).

    Article  Google Scholar 

  24. Opresko, P. L. et al. Telomere binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277, 41110–41119 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, H., Karow, J. K., Hickson, I. D. & Maizels, N. P. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, H., Bennett, R. J. & Maizels, N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G–G paired DNAs. Nucleic Acids Res. 27, 1978–1984 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lustig, A. J. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nature Rev. Genet. 4, 916–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Mosig, G. The essential role of recombination in phage T4 growth. Annu. Rev. Genet. 21, 347–371 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Kreuzer, K. N. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25, 165–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, C., Skopp, R., Takata, M., Takeda, S. & Price, C. M. Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res. 30, 2862–2870 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaco, I. et al. Role of mammalian Rad54 in telomere length maintenance. Mol. Cell. Biol. 23, 5572–5580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldbach, R. W., Bollen-de Boer, J. E., van Bruggen, E. F. & Borst, P. Replication of the linear mitochondrial DNA of Tetrahymena pyriformis. Biochim. Biophys. Acta 562, 400–417 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Morin, G. B. & Cech, T. R. The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell 46, 873–883 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Morin, G. B. & Cech, T. R. Mitochondrial telomeres: surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell 52, 367–374 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Cech, T. R., Nakamura, T. M. & Lingner, J. Telomerase is a true reverse transcriptase. A review. Biochemistry (Mosc.) 62, 1202–1205 (1997).

    CAS  Google Scholar 

  38. Eickbush, T. H. Telomerase and retrotransposons: which came first? Science 277, 911–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Klobutcher, L. A., Swanton, M. T., Donini, P. & Prescott, D. M. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl Acad. Sci. USA 78, 3015–3019 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lipps, H. J., Gruissem, W. & Prescott, D. M. Higher order DNA structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. Proc. Natl Acad. Sci. USA 79, 2495–2499 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gottschling, D. E. & Cech, T. R. Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: phased nucleosomes and a telomeric complex. Cell 38, 501–510 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. (in the press).

  44. Murti, K. G. & Prescott, D. M. Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc. Natl Acad. Sci. USA 96, 14436–14439 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munoz-Jordan, J. L., Cross, G. A., de Lange, T. & Griffith, J. D. T-loops at trypanosome telomeres. Embo J. 20, 579–588 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cesare, A. J., Quinney, N., Willcox, S., Subramanian, D. & Griffith, J. D. Telomere looping in P. sativum (common garden pea). Plant J. 36, 271–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A. & Schultz, S. C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I dedicate this article to the memory of Anat Krauskopf. K. Kreuzer, J. Haber, V. Lundblad, R. Reddel, K. Hoke, and S. Buonomo provided extremely helpful criticism of these ideas. I thank J. Griffith for comments on this manuscript and for long-term collaborative efforts on t-loops. B. Bowerman is acknowledged for sage advice ('Evolution happened. Get over it.'). Space limitations prevented me from providing a thorough review of all relevant publications and I refer to the cited reviews for many important primary references. Research on telomeres in my laboratory is funded by the National Institutes of Health, the National Cancer Institute and the Ellison Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

RecA

SSB

Flybase

HetA

TART

OMIM

Bloom syndrome

Werner syndrome

Saccharomyces genome database

Cdc13

Mre11

Rad50

Rad51

Xrs2

Schizosaccharomyces pombe gene database

Taz1

Pot1

Swiss-Prot

BLM

NBS1

RAD54

TRF2

WRN

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lange, T. T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5, 323–329 (2004). https://doi.org/10.1038/nrm1359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing