Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sorting GPI-anchored proteins

Key Points

  • Glycosylphosphatidylinositol (GPI)-anchored proteins are attached to the lumenal side of membranes of the secretory and endocytic pathways by a glycolipid anchor. As they are not exposed to the cytoplasm, the mechanism of their sorting in the secretory/endocytic system does not fit the normal model of interaction of cytosolic sorting signals with the proteins that are involved in vesicle formation.

  • The GPI anchor endows the protein with the ability to associate with specialized membrane microdomains that are referred to as lipid rafts. It might also carry information that is important for trafficking of the GPI-anchored proteins.

  • After exiting the endoplasmic reticulum (ER), GPI-anchored proteins are segregated into vesicles that are distinct from those carrying other secretory and plasma membrane proteins. Proteins that were previously shown to be required for tethering and fusion of ER-derived vesicles with the Golgi compartment have been shown to have an additional function in GPI-anchored-protein sorting.

  • GPI-anchored proteins are found in very small microdomains at the plasma membrane. They can be internalized from the cell surface by a clathrin and dynamin-independent pinocytic pathway into specialized endosomes by a process that depends on a Rho-family GTPase.

  • GPI-anchored-protein sorting in the endocytic pathway is strongly influenced by lipid composition — in particular, the amounts of cholesterol and sphingolipids, which are components of lipid rafts. Stabilization of the association with lipid-raft domains might be a crucial factor in the retention of GPI-anchored proteins in the endocytic pathway.

  • A common two-step model is proposed for GPI-anchored-protein sorting in the secretory/endocytic pathways. First, GPI-anchored proteins are laterally segregated from other membrane proteins; second, they are concentrated into budding vesicles.

Abstract

The study of glycosylphosphatidylinositol-anchored-protein sorting has led to some surprising new findings and concepts. Evidence is accumulating that, during their delivery to the surface, different types of plasma membrane protein might be sorted from each other early in this pathway, in the endoplasmic reticulum. Furthermore, membrane-lipid composition and microdomains might have a role in the process of protein sorting in both the secretory and endocytic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPI-anchored-protein precursor and anchor structure.
Figure 2: A model of GPI-anchored-protein sorting.
Figure 3: GPI-anchored proteins are internalized into pinosomes by a dynamin-independent mechanism.
Figure 4: Endocytosis of GPI-anchored proteins from the cell surface.

Similar content being viewed by others

References

  1. Mann, R. K. & Beachy, P. A. Cholesterol modification of proteins. Biochim. Biophys. Acta 1529, 188–202 (2000).

    CAS  PubMed  Google Scholar 

  2. Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biol. 3, 368–375 (2001).

    CAS  PubMed  Google Scholar 

  3. Eisenhaber, B., Bork, P. & Eisenhaber, F. Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng. 14, 17–25 (2001).

    CAS  PubMed  Google Scholar 

  4. Ferguson, M. A. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J. Cell Sci. 112, 2799–2809 (1999).

    CAS  PubMed  Google Scholar 

  5. Ikezawa, H. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol. Pharm. Bull. 25, 409–417 (2002).

    CAS  PubMed  Google Scholar 

  6. Masterson, W. J., Raper, J., Doering, T. L., Hart, G. W. & Englund, P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell 62, 73–80 (1990).

    CAS  PubMed  Google Scholar 

  7. Doering, T. L. et al. Toxicity of myristic acid analogs toward African trypanosomes. Proc. Natl Acad. Sci. USA 91, 9735–9739 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Conzelmann, A., Puoti, A., Lester, R. L. & Desponds, C. Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccharomyces cerevisiae. EMBO J. 11, 457–466 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fankhauser, C. et al. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J. Biol. Chem. 268, 26365–26374 (1993).

    CAS  PubMed  Google Scholar 

  10. Haynes, P. A., Gooley, A. A., Ferguson, M. A., Redmond, J. W. & Williams, K. L. Post-translational modifications of the Dictyostelium discoideum glycoprotein PsA. Glycosylphosphatidylinositol membrane anchor and composition of O-linked oligosaccharides. Eur. J. Biochem. 216, 729–737 (1993).

    CAS  PubMed  Google Scholar 

  11. Ferguson, M. A. et al. Glycosyl-phosphatidylinositol molecules of the parasite and the host. Parasitology 108, S45–S54 (1994).

    PubMed  Google Scholar 

  12. Rudd, P. M., Wormald, M. R., Wing, D. R., Prusiner, S. B. & Dwek, R. A. Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40, 3759–3766 (2001).

    CAS  PubMed  Google Scholar 

  13. Leidich, S. D., Drapp, D. A. & Orlean, P. A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J. Biol. Chem. 269, 10193–10196 (1994).

    CAS  PubMed  Google Scholar 

  14. Brul, S. et al. The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie Van Leeuwenhoek 72, 229–237 (1997).

    CAS  PubMed  Google Scholar 

  15. Kawagoe, K. et al. Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87, 3600–3606 (1996).

    CAS  PubMed  Google Scholar 

  16. Takeda, J. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703–711 (1993).

    CAS  PubMed  Google Scholar 

  17. Inoue, N., Murakami, Y. & Kinoshita, T. Molecular genetics of paroxysmal nocturnal hemoglobinuria. Int. J. Hematol. 77, 107–112 (2003).

    CAS  PubMed  Google Scholar 

  18. Baron, G. S. & Caughey, B. Effect of glycosylphosphatidylinositol anchor-dependent and- independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J. Biol. Chem. 278, 14883–14892 (2003).

    CAS  PubMed  Google Scholar 

  19. Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488–495 (1997).

    CAS  PubMed  Google Scholar 

  20. Mellman, I. Membranes and sorting. Curr. Opin. Cell Biol. 8, 497–498 (1996).

    CAS  PubMed  Google Scholar 

  21. Brown, D. GPI-anchored proteins and detergent-resistant membrane domains. Braz. J. Med. Biol. Res. 27, 309–315 (1994).

    CAS  PubMed  Google Scholar 

  22. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992). The first study to correlate the ability of GPI-anchored proteins to associate with microdomains (more specifically, DRMs) with the apical sorting property of GPI anchoring.

    CAS  PubMed  Google Scholar 

  23. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    CAS  PubMed  Google Scholar 

  24. Chatterjee, S. & Mayor, S. The GPI-anchor and protein sorting. Cell. Mol. Life Sci. 58, 1969–1987 (2001).

    CAS  PubMed  Google Scholar 

  25. Sharma, P., Sabharanjak, S. & Mayor, S. Endocytosis of lipid rafts: an identity crisis. Semin. Cell. Dev. Biol. 13, 205–214 (2002).

    CAS  PubMed  Google Scholar 

  26. Zurzolo, C., van Meer, G. & Mayor, S. The order of rafts. EMBO Rep. 4, 1117–1121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of 100 Å using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kenworthy, A. K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    CAS  PubMed  Google Scholar 

  30. Jacobson, K. & Dietrich, C. Looking at lipid rafts? Trends Cell Biol. 9, 87–91 (1999).

    CAS  PubMed  Google Scholar 

  31. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    CAS  PubMed  Google Scholar 

  32. Edidin, M. Lipids on the frontier: a century of cell-membrane bilayers. Nature Rev. Mol. Cell Biol. 4, 414–418 (2003).

    CAS  Google Scholar 

  33. Nuoffer, C., Horvath, A. & Riezman, H. Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein. J. Biol. Chem. 268, 10558–10563 (1993).

    CAS  PubMed  Google Scholar 

  34. Moran, P., Raab, H., Kohr, W. J. & Caras, I. W. Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site. J. Biol. Chem. 266, 1250–1257 (1991).

    CAS  PubMed  Google Scholar 

  35. Udenfriend, S., Micanovic, R. & Kodukula, K. Structural requirements of a nascent protein for processing to a PI-G anchored form: studies in intact cells and cell-free systems. Cell Biol. Int. Rep. 15, 739–759 (1991).

    CAS  PubMed  Google Scholar 

  36. Doering, T. L. & Schekman, R. GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J. 15, 182–191 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003).

    CAS  Google Scholar 

  38. McDowell, M. A., Ransom, D. M. & Bangs, J. D. Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. Biochem. J. 335, 681–689 (1998). Provides evidence that GPI anchors could be a signal for efficient transport of proteins from the ER to the Golgi compartment.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Butikofer, P., Malherbe, T., Boschung, M. & Roditi, I. GPI-anchored proteins: now you see 'em, now you don't. FASEB J. 15, 545–548 (2001). Contains the surprising finding that, at least in some cases, the protein structure of GPI-anchored proteins is highly dependent on the presence of the GPI anchor.

    CAS  PubMed  Google Scholar 

  40. Muniz, M., Morsomme, P. & Riezman, H. Protein sorting upon exit from the endoplasmic reticulum. Cell 104, 313–320 (2001). Provides the first evidence that cargo proteins, including GPI-anchored proteins, can exit the ER in at least two vesicle populations.

    CAS  PubMed  Google Scholar 

  41. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. VanRheenen, S. M. et al. Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J. Cell Biol. 147, 729–742 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Whyte, J. R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    CAS  PubMed  Google Scholar 

  44. Barrowman, J., Sacher, M. & Ferro-Novick, S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J. 19, 862–869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Waters, M. G., Clary, D. O. & Rothman, J. E. A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J. Cell Biol. 118, 1015–1026 (1992).

    CAS  PubMed  Google Scholar 

  47. Sapperstein, S. K., Walter, D. M., Grosvenor, A. R., Heuser, J. E. & Waters, M. G. p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p. Proc. Natl Acad. Sci. USA 92, 522–526 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morsomme, P. & Riezman, H. The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev. Cell 2, 307–317 (2002). Provides evidence that factors involved in tethering of ER-derived vesicles to the Golgi compartment have an additional function in cargo-protein sorting on exit from the ER.

    CAS  PubMed  Google Scholar 

  50. Muniz, M., Nuoffer, C., Hauri, H. P. & Riezman, H. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148, 925–930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Friedmann, E., Salzberg, Y., Weinberger, A., Shaltiel, S. & Gerst, J. E. YOS9, the putative yeast homolog of a gene amplified in osteosarcomas, is involved in the endoplasmic reticulum (ER)-Golgi transport of GPI- anchored proteins. J. Biol. Chem. 277, 35274–35281 (2002).

    CAS  PubMed  Google Scholar 

  52. Belden, W. J. & Barlowe, C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294, 1528–1531 (2001). Identifies conclusively a transmembrane protein that acts to concentrate a lumenal cargo protein into vesicles formed on the ER membrane.

    CAS  PubMed  Google Scholar 

  53. Miller, E., Antonny, B., Hamamoto, S. & Schekman, R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 21, 6105–6113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Malkus, P., Jiang, F. & Schekman, R. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J. Cell Biol. 159, 915–921 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Morsomme, P., Prescianotto-Baschong, C. & Riezman, H. The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J. Cell Biol. 162, 403–412 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lisanti, M. P., Caras, I. W., Davitz, M. A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 109, 2145–2156 (1989).

    CAS  PubMed  Google Scholar 

  57. Brown, D. A., Crise, B. & Rose, J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    CAS  PubMed  Google Scholar 

  58. Benting, J. H., Rietveld, A. G. & Simons, K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin–Darby canine kidney cells. J. Cell Biol. 146, 313–320 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lipardi, C., Nitsch, L. & Zurzolo, C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol. Biol. Cell 11, 531–542 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol. 9, 291–294 (1999).

    CAS  PubMed  Google Scholar 

  61. Cheong, K. H., Zacchetti, D., Schneeberger, E. E. & Simons, K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc. Natl Acad. Sci. USA 96, 6241–6248 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin-Belmonte, F., Puertollano, R., Millan, J. & Alonso, M. A. The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin–Darby canine kidney and fischer rat thyroid cell lines. Mol. Biol. Cell 11, 2033–2045 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Millan, J. & Alonso, M. A. MAL, a novel integral membrane protein of human T lymphocytes, associates with glycosylphosphatidylinositol-anchored proteins and Src-like tyrosine kinases. Eur. J. Immunol. 28, 3675–3684 (1998).

    CAS  PubMed  Google Scholar 

  64. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  65. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  66. Maxfield, F. R. & Mayor, S. Cell surface dynamics of GPI-anchored proteins. Adv. Exp. Med. Biol. 419, 355–364 (1997).

    CAS  PubMed  Google Scholar 

  67. Rijnboutt, S. et al. Endocytosis of GPI-linked membrane folate receptor-α. J. Cell Biol. 132, 35–47 (1996).

    CAS  PubMed  Google Scholar 

  68. Mayor, S., Sabharanjak, S. & Maxfield, F. R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17, 4626–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chatterjee, S., Smith, E. R., Hanada, K., Stevens, V. L. & Mayor, S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J. 20, 1583–1592 (2001). Together, references 68 and 69 show that sorting of GPI-anchored proteins in endosomes of mammalian cells is dependent on cholesterol and sphingolipid concentrations in cells, consistent with the role of cholesterol- and sphingolipid-enriched microdomains in trafficking.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sabharanjak, S., Sharma, P., Parton, R. & Mayor, S. GPI-anchored proteins are delivered to the endosomal recycling compartment via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002). Identifies a distinct dynamin-independent endocytic pathway that is responsible for the internalization of GPI-anchored proteins, and also shows that this route accounts for a significant fraction of fluid-phase uptake.

    CAS  PubMed  Google Scholar 

  71. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002). Provides evidence for the plasticity of GEEC targeting and indicates that the time of association of GPI-anchored proteins with microdomains might also be important for their final destination inside the endosomal system.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    CAS  PubMed  Google Scholar 

  73. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    CAS  PubMed  Google Scholar 

  74. Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).

    CAS  PubMed  Google Scholar 

  75. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    CAS  PubMed  Google Scholar 

  76. Deckert, M., Ticchioni, M. & Bernard, A. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J. Cell Biol. 133, 791–799 (1996).

    CAS  PubMed  Google Scholar 

  77. Pauly, P. C. & Harris, D. A. Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33107–33110 (1998).

    CAS  PubMed  Google Scholar 

  78. Sunyach, C. et al. The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein EMBO J. 22, 3591–3601 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Conese, M. et al. α2 Macroglobulin receptor/Ldl receptor-related protein (Lrp)-dependent internalization of the urokinase receptor. J. Cell Biol. 131, 1609–1622 (1995).

    CAS  PubMed  Google Scholar 

  80. Nykjaer, A. et al. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase·plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 267, 14543–14546 (1992).

    CAS  PubMed  Google Scholar 

  81. Poussin, C., Foti, M., Carpentier, J. L. & Pugin, J. CD14-dependent endotoxin internalization via a macropinocytic pathway. J. Biol. Chem. 273, 20285–20291 (1998).

    CAS  PubMed  Google Scholar 

  82. Triantafilou, K., Triantafilou, M. & Dedrick, R. L. A CD14-independent LPS receptor cluster. Nature Immunol. 2, 338–345 (2001).

    CAS  Google Scholar 

  83. Nabi, I. R. & Le, P. U. Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guha, A., Sriram, V., Krishnan, K. S. & Mayor, S. shibire mutations reveal distinct dynamin-independent and dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 116, 3373–3386 (2003).

    CAS  PubMed  Google Scholar 

  85. Skretting, G., Torgersen, M. L., van Deurs, B. & Sandvig, K. Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J. Cell Sci. 112, 3899–3909 (1999).

    CAS  PubMed  Google Scholar 

  86. Ricci, V. et al. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol. Biol. Cell 11, 3897–3909 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Puri, V. et al. Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pal, A., Hall, B. S., Nesbeth, D. N., Field, H. I. & Field, M. C. Differential endocytic functions of Trypanosoma brucei Rab5 isoforms reveal a glycosylphosphatidylinositol-specific endosomal pathway. J. Biol. Chem. 277, 9529–9539 (2002).

    CAS  PubMed  Google Scholar 

  89. Nichols, B. J. et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kamen, B. A., Wang, M. T., Streckfuss, A. J., Peryea, X. & Anderson, R. G. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J. Biol. Chem. 263, 13602–13609 (1988).

    CAS  PubMed  Google Scholar 

  91. Horvath, A., Sutterlin, C., Manning-Krieg, U., Movva, N. R. & Riezman, H. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J. 13, 3687–3695 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H. & Riezman, H. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277, 49538–49544 (2002).

    CAS  PubMed  Google Scholar 

  93. Bagnat, M., Keranen, S., Shevchenko, A. & Simons, K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl Acad. Sci. USA 97, 3254–3259 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Heese-Peck, A. et al. Multiple functions of sterols in yeast endocytosis. Mol. Biol. Cell 13, 2664–2680 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sievi, E., Suntio, T. & Makarow, M. Proteolytic function of GPI-anchored plasma membrane protease Yps1p in the yeast vacuole and Golgi. Traffic 2, 896–907 (2001).

    CAS  PubMed  Google Scholar 

  96. Bagnat, M. & Simons, K. Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol. Chem. 383, 1475–1480 (2002).

    CAS  PubMed  Google Scholar 

  97. Esfahani, M. et al. Cholesterol regulates the cell surface expression of glycophospholipid-anchored CD14 antigen on human monocytes. Biochim. Biophys. Acta 1149, 217–223 (1993).

    CAS  PubMed  Google Scholar 

  98. Hannan, L. A. & Edidin, M. Traffic, polarity, and detergent solubility of a glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J. Cell Biol. 133, 1265–1276 (1996).

    CAS  PubMed  Google Scholar 

  99. Ledesma, M. D., Simons, K. & Dotti, C. G. Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA 95, 3966–3971 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    CAS  PubMed  Google Scholar 

  101. Lian, J. P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature 372, 698–701 (1994).

    CAS  PubMed  Google Scholar 

  102. Sapperstein, S. K., Lupashin, V. V., Schmitt, H. D. & Waters, M. G. Assembly of the ER to Golgi SNARE complex requires Uso1p. J. Cell Biol. 132, 755–767 (1996).

    CAS  PubMed  Google Scholar 

  103. Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  104. Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001).

    CAS  PubMed  Google Scholar 

  105. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    CAS  PubMed  Google Scholar 

  106. McConnell, H. M. & Vrljic, M. Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32, 469–492 (2003).

    CAS  PubMed  Google Scholar 

  107. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    CAS  PubMed  Google Scholar 

  108. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    CAS  PubMed  Google Scholar 

  109. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Heerklotz, H., Szadkowska, H., Anderson, T. & Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J. Mol. Biol. 329, 793–799 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in S. Mayor's laboratory was supported by a Senior Research Fellowship from The Wellcome Trust, the Department of Biotechnology (India), and intra-mural funds from the National Centre for Biological Sciences, India. S.M. is grateful to V. Sriram, S. Sabharanjak, S. Chatterjee and P. Sharma and other members of the laboratory for their invaluable contributions to this review. Research in H. Riezman's laboratory was supported by grants from the Swiss National Science Foundation, Human Frontiers Science Program Organization, and the Office Fédéral de l'Education et de la Science. H.R. is grateful to members of his laboratory for critical reading of the review.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

PIGA

OMIM

Paroxysmal nocturnal haemoglobinuria

Saccharomyces genome database

bet1

bos1

Emp24

ERV29

Gas1

sec22

SEC34

Uso1

YOS9

Ypt1

Swiss-Prot

CD14

LBP

p115

uPA

uPAR

Glossary

ISOPRENOIDS

Compounds that are derived from isoprene (2-methylbuta-1,3-diene) linked together in head-to-tail or tail-to-tail conformations and that comprise farnesyl and geranylgeranyl molecules that are used in the covalent modification of proteins on cysteine residues.

COMPLEMENT

Nine interacting serum proteins (C1–C9) — which are mostly enzymes — that are activated in a coordinated way and participate in bacterial lysis and macrophage chemotaxis.

COAT PROTEINS

Molecules that form a proteinaceous coating around vesicles that are used in membrane trafficking. They are believed to be important for vesicle formation and recruitment of cargo into the forming vesicles.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). The non-radiative transfer of energy from a donor fluorophore to an acceptor fluorophore that is typically <80 Å away. FRET will only occur between fluorophores in which the emission spectrum of the donor has a significant overlap with the excitation of the acceptor.

NSF

(N-ethylmaleimide-sensitive fusion protein). NSF was originally isolated because of its requirement for vesicle fusion in vitro. It is associated with SNAPs (soluble NSF accessory proteins).

PRO-ALPHA FACTOR

A yeast pheromone precursor that is produced by haploid mating-type-a cells.

COG COMPLEX

A protein complex that is conserved from yeast to mammalian cells and is found on the Golgi compartment. Its precise function is not yet known, but it seems to be important for various steps of membrane trafficking to, and through, the Golgi.

SNARE PROTEINS

Soluble NSF (N-ethylmaleimide-sensitive fusion protein) accessory protein (SNAP) receptors on the membrane. SNARE proteins have been implicated as determinants of the specific fusion of vesicles with target membranes. They have been classified into two complementary classes that are referred to as vesicle-membrane SNAREs (v-SNAREs) and target-membrane SNAREs (t-SNAREs).

APICAL DOMAIN

A domain in the plasma membrane of epithelial cells that is exposed to the external environment.

N-GLYCANS

Carbohydrate molecules that are linked to asparagine moieties in proteins. They have several possible structures and are built on a common core structure that is composed of N-acetylglucosamine and mannoses.

CLATHRIN

The first vesicle coat protein to be identified. It is involved in membrane traffic to, and through, the endocytic pathway.

DYNAMIN

A high-molecular-weight GTPase that is thought to be involved in the 'pinching off' of vesicles from membranes.

PINCHING OFF

The process whereby vesicles are detached from membranes.

CAVEOLAE

Small plasma-membrane invaginations that occur in many cell types, in particular in endothelial cells. Caveolae are usually coated with a protein of the caveolin family.

LIPOPOLYSACCHARIDE

(LPS). A bacterial surface glycolipid that is often a primary antigen and effector during bacterial infections.

HAEMOCYTES

Blood cells, particularly of insects and crustacea. They are similar in many respects to leukocytes, as they are phagocytic and are not involved in oxygen transport.

RABS

Small Ras-like GTPase molecules that are implicated in regulating membrane-trafficking dynamics by recruiting effector molecules.

GEEC

(GPI-anchored-protein-enriched early endosomal compartments). It accounts for a main fraction of the fluid phase of the endocytic content, and is formed independently of dynamin function.

CDC42

A small Rho-family GTPase that is implicated in localized actin dynamics in cells.

TOXIN B

A Clostridium difficile toxin that irreversibly inactivates all Rho-family GTPases by glucosylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayor, S., Riezman, H. Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5, 110–120 (2004). https://doi.org/10.1038/nrm1309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing