Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathways of chaperone-mediated protein folding in the cytosol

Key Points

  • In the cytosol of prokaryotes and eukaryotes, networks of molecular chaperones can assist polypeptides at all stages of folding.

  • The core chaperone machinery — the 70-kDa heat-shock proteins (Hsp70) and chaperonins — is maintained from prokaryotes to eukaryotes, although the chaperone network is expanded in eukaryotes.

  • To help the folding of nascent polypeptides, the chaperone and peptidyl-prolyl isomerase trigger factor, which is docked on the bacterial ribosome, binds them as they emerge from the ribosomal exit site.

  • Eukaryotic Hsp70 chaperones bind nascent chains as they emerge from ribosomes. In Saccharomyces cerevisiae, the ribosome-associated complex recruits the Ssb Hsp70 chaperones to nascent chains.

  • DnaK, which is the Escherichia coli Hsp70, works together with the chaperonin GroEL to fold newly synthesized proteins; polypeptides can be transferred between these chaperones.

  • In eukaryotes, Hsp70 chaperones can cooperate with the chaperonin TCP1 ring complex (TRiC) to fold newly synthesized polypeptides both during and after their translation (for example, some WD40-repeat proteins).

  • The eukaryotic chaperone GimC/prefoldin can bind nascent chains and work with TRiC to fold actin and tubulin.

  • Some eukaryotic polypeptides are passed from the Hsp70 protein HSC70 (70-kDa heat-shock cognate protein) onto chaperones of the Hsp90 (90-kDa heat-shock protein) family, which can work with several co-chaperones to assist the folding of particular proteins.

  • Co-chaperones of HSC70 and HSP90 are also used to sort polypeptides for mitochondrial targeting or to target them for degradation by the proteasome.

Abstract

Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate polypeptides from the point of initial synthesis on ribosomes to the final stages of folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chaperone network of the prokaryotic cytosol.
Figure 2: The early chaperone network of the eukaryotic cytosol.
Figure 3: The late chaperone network of the eukaryotic cytosol.

Similar content being viewed by others

References

  1. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  PubMed  Google Scholar 

  2. Dobson, C. M. & Karplus, M. The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101 (1999).

    CAS  PubMed  Google Scholar 

  3. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS  PubMed  Google Scholar 

  4. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert, R. J. C. et al. Three-dimensional structures of translating ribosomes by cryo-EM. Mol. Cell 14, 57–66 (2004).

    CAS  PubMed  Google Scholar 

  6. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    CAS  PubMed  Google Scholar 

  7. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F. X. Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J. 16, 54–58 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Valent, Q. A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25, 53–64 (1997).

    CAS  PubMed  Google Scholar 

  10. Hesterkamp, T., Hauser, S., Lutcke, H. & Bukau, B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl Acad. Sci. USA 93, 4437–4441 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl Acad. Sci. USA 98, 14244–14249 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hesterkamp, T., Deuerling, E. & Bukau, B. The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J. Biol. Chem. 272, 21865–21871 (1997).

    CAS  PubMed  Google Scholar 

  13. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002). The nature of the specific interaction between ribosomes and the nascent-chain-binding chaperone TF is determined.

    CAS  PubMed  Google Scholar 

  14. Blaha, G. et al. Localization of the trigger factor binding site on the ribosomal 50S subunit. J. Mol. Biol. 326, 887–897 (2003).

    CAS  PubMed  Google Scholar 

  15. Maier, R., Scholz, C. & Schmid, F. X. Dynamic association of trigger factor with protein substrates. J. Mol. Biol. 314, 1181–1190 (2001).

    CAS  PubMed  Google Scholar 

  16. Genevaux, P. et al. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep. 5, 195–200 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kramer, G. et al. Trigger factor's peptidyl-prolyl isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J. Biol. Chem. 279, 14165–14170 (2004).

    CAS  PubMed  Google Scholar 

  18. Teter, S. A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765 (1999). Shows that both TF and Hsp70 (DnaK) bind nascent polypeptides and are crucial for the folding of newly synthesized proteins.

    CAS  PubMed  Google Scholar 

  19. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    CAS  PubMed  Google Scholar 

  20. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1585 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Hendrick, J. P., Langer, T., Davis, T. A., Hartl, F. U. & Wiedmann, M. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl Acad. Sci. USA 90, 10216–10220 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693–696 (1999). Together with reference 18, this report shows a functional cooperation between TF and Hsp70 (DnaK).

    CAS  PubMed  Google Scholar 

  23. Vorderwülbecke, S. et al. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. FEBS Lett. 559, 181–187 (2004).

    PubMed  Google Scholar 

  24. Agashe, V. R. et al. Function of trigger factor and DnaK in multi-domain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).

    CAS  PubMed  Google Scholar 

  25. Michimoto, T., Aoki, T., Toh-e, A. & Kikuchi, Y. Yeast Pdr13p and Zuo1p molecular chaperones are new functional Hsp70 and Hsp40 partners. Gene 257, 131–137 (2000).

    CAS  PubMed  Google Scholar 

  26. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK–DnaJ homologs Ssz1p and zuotin. Proc. Natl Acad. Sci. USA 98, 3762–3767 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hundley, H. et al. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl Acad. Sci. USA 99, 4203–4208 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E. A. The translation machinery and 70 kD heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992). Presents some of the earliest evidence for a functional cooperation of cytosolic chaperones with the translation machinery.

    CAS  PubMed  Google Scholar 

  30. Pfund, C. et al. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome–nascent chain complex. EMBO J. 17, 3981–3989 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Siegers, K. et al. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J. 22, 5230–5240 (2003). Shows that the chaperonin TRiC works with two types of chaperone, Hsp70 (Ssb) and GimC, to fold subsets of its substrates.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl Acad. Sci. USA 99, 4209–4214 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Beckmann, R. P., Mizzen, L. E. & Welch, W. J. Interaction of Hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854 (1990).

    CAS  PubMed  Google Scholar 

  34. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    CAS  PubMed  Google Scholar 

  35. Eggers, D. K., Welch, W. J. & Hansen, W. J. Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol. Biol. Cell 8, 1559–1573 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Terada, K., Kanazawa, M., Bukau, B. & Mori, M. The human DnaJ homologue dj2 facilitates mitochondrial protein import and luciferase refolding. J. Cell Biol. 139, 1089–1095 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagata, H., Hansen, W. J., Freeman, B. & Welch, W. J. Mammalian cytosolic DnaJ homologues affect the hsp70 chaperone–substrate reaction cycle, but do not interact directly with nascent or newly synthesized proteins. Biochemistry 37, 6924–6938 (1998).

    CAS  PubMed  Google Scholar 

  38. McCallum, C. D., Do, H., Johnson, A. E. & Frydman, J. The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-crosslinking. J. Cell Biol. 149, 591–602 (2000). The results in this paper indicate a tight coupling between translation and chaperone-assisted protein folding.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiedmann, B., Sakai, H., Davis, T. A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).

    CAS  PubMed  Google Scholar 

  40. Shi, X., Parthun, M. R. & Jaehning, J. A. The yeast EGD2 gene encodes a homologue of the α-NAC subunit of the human nascent-polypeptide-associated complex. Gene 165, 199–202 (1995).

    CAS  PubMed  Google Scholar 

  41. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. & Furtak, K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917 (1993).

    CAS  PubMed  Google Scholar 

  42. Ewalt, K. L., Hendrick, J. P., Houry, W. A. & Hartl, F. U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

    CAS  PubMed  Google Scholar 

  43. Langer, T. et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689 (1992). This early paper shows that Hsp70 (DnaK) and chaperonins cooperate mechanistically in polypeptide folding.

    CAS  PubMed  Google Scholar 

  44. Houry, W. A., Frishman, D., Eckerskorn, D., Lottspeich, F. & Hartl, F. U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

    CAS  PubMed  Google Scholar 

  45. Buchberger, A., Schröder, H., Hesterkamp, T., Schönfeld, H. J. & Bukau, B. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J. Mol. Biol. 261, 328–333 (1996).

    CAS  PubMed  Google Scholar 

  46. Segal, G. & Ron, E. Z. Regulation of the heat-shock response in bacteria. Ann. NY Acad. Sci. 851, 147–151 (1998).

    CAS  PubMed  Google Scholar 

  47. Hesterkamp, T. & Bukau, B. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J. 17, 4818–4828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaudhuri, T. K., Farr, G. W., Fenton, W. A., Rospert, S. & Horwich, A. L. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107, 235–246 (2001). A new mechanism for bacterial GroEL/ES is described, in which the substrate is bound only by the open end of the chaperonin system. This raises the possibility of GroEL interactions with nascent chains.

    CAS  PubMed  Google Scholar 

  49. Valpuesta, J. M, Mart'n-Benito, J., Gómez-Puertas, P., Carrascosa, J. L. & Willison, K. R. Structure and function of a protein folding machine: the eukaryotic chaperonin CCT. FEBS Lett. 529, 11–16 (2002).

    CAS  PubMed  Google Scholar 

  50. Llorca, O. et al. The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J. 20, 4065–4075 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klumpp, M., Baumeister, W. & Essen, L. -O. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91, 263–270 (1997).

    CAS  PubMed  Google Scholar 

  52. Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–138 (1998).

    CAS  PubMed  Google Scholar 

  53. Meyer, A. S. et al. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113, 369–381 (2003). The eukaryotic chaperonin TRiC is shown to use an encapsulation mechanism to assist the folding of its substrates, which is conceptually similar to the mechanism that is used by the bacterial chaperonin system GroEL–GroES.

    CAS  PubMed  Google Scholar 

  54. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H. & Cowan, N. J. A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050 (1992).

    CAS  PubMed  Google Scholar 

  55. Yaffe, M. B. et al. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248 (1992).

    CAS  PubMed  Google Scholar 

  56. Farr, G. W., Scharl, E. C., Schumacher, R. J., Sondek, S. & Horwich, A. L. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell 89, 927–937 (1997).

    CAS  PubMed  Google Scholar 

  57. Won, K. A., Schumacher, R. J., Farr, G. W., Horwich, A. L. & Reed, S. I. Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol. Cell. Biol. 18, 7584–7589 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Feldman, D. E., Thulasiraman, V., Ferreyra, R. G. & Frydman, J. Formation of the VHL–elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol. Cell 4, 1051–1061 (1999).

    CAS  PubMed  Google Scholar 

  59. Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol. Cell 12, 87–100 (2003).

    CAS  PubMed  Google Scholar 

  60. Kim, S., Schilke, B., Craig, E. A. & Horwich, A. L. Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc. Natl Acad. Sci. USA 95, 12860–12865 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson, J. L. & Craig, E. A. An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J. Cell Biol. 152, 851–856 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Melville, M. W., McClellan, A. J., Meyer, A. S., Darveau, A. & Frydman, J. The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel–Lindau tumor suppressor complex. Mol. Cell. Biol. 23, 3141–3151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Geissler, S., Siegers, K. & Schiebel, E. A novel protein complex promoting formation of functional α- and γ-tubulin. EMBO J. 17, 952–966 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vainberg, I. E. et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863–873 (1998).

    CAS  PubMed  Google Scholar 

  65. Siegert, R., Leroux, M. R., Scheufler, C., Hartl, F. U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    CAS  PubMed  Google Scholar 

  66. Mart'n-Benito, J. et al. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21, 6377–6386 (2002).

    Google Scholar 

  67. Hansen, W. J., Cowan, N. J. & Welch, W. J. Prefoldin–nascent chain complexes in the folding of cytoskeletal proteins. J. Cell Biol. 145, 265–277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Siegers, K. et al. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin–GimC system. EMBO J. 18, 75–84 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Simons, C. T. et al. Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding. J. Biol. Chem. 179, 4196–4203 (2004).

    Google Scholar 

  70. Llorca, O. et al. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402, 693–696 (1999).

    CAS  PubMed  Google Scholar 

  71. Llorca, O. et al. Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J. 19, 5971–5979 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: a specialized but essential protein folding tool. J. Cell Biol. 154, 267–273 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Richter, K. & Buchner, J. Hsp90: chaperoning signal transduction. J. Cell. Phys. 188, 281–290 (2001).

    CAS  Google Scholar 

  74. Pratt, W. B. & Toft, D. O. Regulation of signalling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228, 111–133 (2003).

    CAS  Google Scholar 

  75. Panaretou, B. et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Young, J. C. & Hartl, F. U. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J. 19, 5930–5940 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. BioEssays 26, 348–362 (2004).

    CAS  PubMed  Google Scholar 

  78. Hernandez, M. P., Chadli, A. & Toft, D. O. HSP40 is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J. Biol. Chem. 277, 11873–11881 (2002).

    CAS  PubMed  Google Scholar 

  79. Riggs, D. L. et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22, 1158–1167 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilized Cdk4. Genes Dev. 10, 1491–1502 (1996).

    CAS  PubMed  Google Scholar 

  81. Dey, B., Lightbody, J. J. & Boschelli, F. CDC37 is required for p60v-src activity in yeast. Mol. Biol. Cell 7, 1405–1417 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dai, K., Kobayashi, R. & Beach, D. Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem. 271, 22030–22034 (1996).

    CAS  PubMed  Google Scholar 

  83. Chen, G., Cao, P. & Goeddel, D. V. TNF-induced recruitment and activation of the IKK complex requires Cdc37 and Hsp90. Mol. Cell 9, 401–410 (2002).

    CAS  PubMed  Google Scholar 

  84. Basso, A. D. et al. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277, 39858–39866 (2002).

    CAS  PubMed  Google Scholar 

  85. Lange, B. M., Rebollo, E., Herold, A. & González, C. Cdc37 is essential for chromosome segregation and cytokinesis in higher eukaryotes. EMBO J. 21, 5364–5374 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tatebe, H. & Shiozaki, K. Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol. Cell. Biol. 23, 5132–5142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hartson, S. D. et al. p50cdc37 is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry 39, 7631–7644 (2000).

    CAS  PubMed  Google Scholar 

  88. Lee, P. et al. The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J. Cell Biol. 159, 1051–1059 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, P., Shabbir, A., Cardozo, C. & Caplan, A. J. Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol. Biol. Cell 15, 1785–1792 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kazlauskas, A., Sundstrom, S., Poellinger, L. & Pongratz, I. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol. 21, 2594–2607 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lees, M. J., Peet, D. J. & Whitelaw, M. L. Defining the role for XAP2 in stabilization of the dioxin receptor. J. Biol. Chem. 278, 35878–35888 (2003).

    CAS  PubMed  Google Scholar 

  92. Barral, J. M., Hutagalung, A. H., Brinker, A., Hartl, F. U. & Epstein, H. F. Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295, 669–671 (2002).

    CAS  PubMed  Google Scholar 

  93. Takahashi, A., Casais, C., Ichimura, K. & Shirasu, K. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl Acad. Sci. USA 100, 11777–11782 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hubert, D. A. et al. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 5679–5689 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, R. et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. & Dinesh-Kumar, S. P. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and RAR1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108 (2004).

    CAS  PubMed  Google Scholar 

  97. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. & Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  98. Stemmann, O., Neidig, A., Köcher, T., Wilm, M. & Lechner, J. Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Proc. Natl Acad. Sci. USA 99, 8585–8590 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003). Shows that HSP90 in complexes in tumour cells is much more active than in untransformed cells, in which it is largely uncomplexed. This increased activity involves interactions with Hsp70 (HSC70) and co-chaperones of both HSP90 and HSC70.

    CAS  PubMed  Google Scholar 

  100. Höhfeld, J., Cyr, D. M. & Patterson, C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2, 885–890 (2001).

    PubMed  PubMed Central  Google Scholar 

  101. Cyr, D. M., Höhfeld, J. & Patterson, C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368–375 (2002).

    CAS  PubMed  Google Scholar 

  102. Young, J. C., Barral, J. M. & Hartl, F. U. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003).

    CAS  PubMed  Google Scholar 

  103. Truscott, K. N., Brandner, K. & Pfanner, N. Mechanisms of protein import into mitochondria. Curr. Biol. 13, R326–R337 (2003).

    CAS  PubMed  Google Scholar 

  104. Deshaies, R. J., Koch, B. C., Werner-Washburne, M., Craig, E. A. & Schekman, R. W. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800–805 (1988).

    CAS  PubMed  Google Scholar 

  105. Terada, K. et al. The requirement of heat shock cognate 70 protein for mitochondrial import varies among precursor proteins and depends on precursor length. Mol. Cell. Biol. 16, 6103–6109 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). Reports the discovery of a specific interaction that directs the HSC70–HSP90 chaperone machinery to the mitochondrial outer membrane for the purpose of protein targeting.

    CAS  PubMed  Google Scholar 

  107. Yano, M., Terada, K. & Mori, M. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J. Cell Biol. 163, 45–56 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Becker, J., Walter, W., Yan, W. & Craig, E. A. Functional interaction of cytosolic hsp70 and a DnaJ related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol. 16, 4378–4386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    CAS  PubMed  Google Scholar 

  110. Takayama, S. & Reed, J. C. Molecular chaperone targeting and regulation by BAG family proteins. Nature Cell Biol. 3, E237–E241 (2001).

    CAS  PubMed  Google Scholar 

  111. Höhfeld, J. & Jentsch, S. GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209–6216 (1997).

    PubMed  PubMed Central  Google Scholar 

  112. Sondermann, H. et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553–1557 (2001).

    CAS  PubMed  Google Scholar 

  113. Connell, P. et al. Regulation of heat shock protein-mediated protein triage decisions by the co-chaperone CHIP. Nature Cell Biol. 3, 93–96 (2001).

    CAS  PubMed  Google Scholar 

  114. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001). References 113 and 114 show that the HSC70 and HSP90 chaperones are linked to the ubiquitin-mediated proteasome-degradation system through a ubiquitin-ligase co-chaperone. This indicates that these chaperones function in protein quality control.

    CAS  PubMed  Google Scholar 

  115. Demand, J., Alberti, S., Patterson, C. & Höhfeld, J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11, 1569–1577 (2002).

    Google Scholar 

  116. Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277, 45920–45927 (2002).

    CAS  PubMed  Google Scholar 

  117. Song, J., Takeda, M. & Morimoto, R. I. Bag1–Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nature Cell Biol. 3, 276–282 (2001).

    CAS  PubMed  Google Scholar 

  118. Dai, Q. et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22, 5446–5458 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Thomas, J. G. & Baneyx, F. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol. Microbiol. 36, 1360–1370 (2000).

    CAS  PubMed  Google Scholar 

  120. Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J. & Lindquist, S. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperature. Mol. Cell. Biol. 9, 3919–3930 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yue, L. et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151, 1065–1079 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, J. D., Herman, C., Tipton, K. A., Gross, C. A. & Weissman, J. S. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111, 1027–1039 (2002).

    CAS  PubMed  Google Scholar 

  123. Mogk, A. & Bukau, B. Molecular chaperones: structure of a protein disaggregase. Curr. Biol. 14, R78–R80 (2004).

    CAS  PubMed  Google Scholar 

  124. Mogk, A. et al. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    CAS  PubMed  Google Scholar 

  126. Schlee, S., Beinker, P., Akhrymuk, A. & Reinstein, J. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J. Mol. Biol. 336, 275–285 (2004).

    CAS  PubMed  Google Scholar 

  127. Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232–2235 (2002).

    CAS  PubMed  Google Scholar 

  128. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998). Proposes a role for HSP90 in buffering widespread genetic variation in morphogenic pathways and, therefore, in potentiating evolutionary change through the occasional selection of an accumulated variation.

    CAS  PubMed  Google Scholar 

  129. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 29 Aug 2004 (doi:10.1038/nature02899).

  130. Lopez-Buesa, P., Pfund, C. & Craig, E. A. The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. Proc. Natl Acad. Sci. USA 95, 15253–15258 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kabani, M., McLellan, C., Raynes, D. A., Guerriero, V. & Brodsky, J. L. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 531, 339–342 (2002).

    CAS  PubMed  Google Scholar 

  132. Kabani, M., Beckerich, J. -M. & Brodsky, J. L. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell. Biol. 22, 4677–4689 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Höhfeld, J., Minami, Y. & Hartl, F. U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 cycle. Cell 83, 589–598 (1995).

    PubMed  Google Scholar 

  134. Nollen, E. A. A. et al. Modulation of in vivo Hsp70 chaperone activity by Hip and Bag-1. J. Biol. Chem. 276, 4677–4682 (2001).

    CAS  PubMed  Google Scholar 

  135. Hallstrom, T. C., Katzmann, D. J., Torres, R. J., Sharp, W. J. & Moye-Rowley, W. S. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1147–1155 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ullers, R. S. et al. SecB is a bona fide generalized chaperone in Escherichia coli. Proc. Natl Acad. Sci. USA 101, 7583–7588 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pearl, L. H. & Prodromou, C. Structure, function and mechanism of the Hsp90 molecular chaperone. Adv. Protein Chem. 59, 157–186 (2001).

    CAS  PubMed  Google Scholar 

  138. Scheufler, C. et al. Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    CAS  PubMed  Google Scholar 

  139. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 18, 754–762 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brychzy, A. et al. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613–3623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Panaretou, B. et al. Activation of the ATPase of hsp90 by the stress-regulated cochaperone Aha1. Mol. Cell 10, 1307–1318 (2002).

    CAS  PubMed  Google Scholar 

  142. Lotz, G. P., Lin, H., Harst, A. & Obermann, W. M. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase of the molecular chaperone. J. Biol. Chem. 278, 17228–17235 (2003).

    CAS  PubMed  Google Scholar 

  143. Roe, S. M. et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 116, 87–98 (2004).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ulrich Hartl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

AHA1

AIP

BAG1

CDC37

CHIP

ClpB

DJA1

DJB1

DJC7

DnaJ

DnaK

FKB4

GroEL

GroES

GrpE

HOP

HSC70

HSP90

Hsp104

HSPBP1

p23

prefoldin

SGT1

Ssb1

Ssz1

TCP1

TF

TOM70

UNC-45

zuotin

FURTHER INFORMATION

Max-Planck-Institute for Biochemistry: Department for Cellular Biochemistry

Jason Young's web page

Glossary

MOLECULAR CHAPERONES

Proteins that help the folding of other proteins, usually through cycles of binding and release, without forming part of their final native structure.

EXCLUDED VOLUME EFFECT

Extremely high concentrations of inert macromolecules are thought to affect the thermodynamics of reactions between other macromolecules by reducing the available volume in the solution. This effect is observed as an increase in the rates and affinities of intermolecular binding reactions.

TERTIARY STRUCTURE

This term refers to the native three-dimensional conformation of a polypeptide, in which secondary (local) structure elements are packed against each other and specific contacts can form between sections of a polypeptide chain that are widely separated in the amino-acid sequence.

PEPTIDYL-PROLYL CISTRANS ISOMERASE

The folding of some proteins requires the rotation of a peptide bond that precedes a proline residue from the trans (extended) to the cis (bent) position, which normally takes place slowly. The peptidyl-prolyl isomerases catalyse this interconversion, which can increase the folding rate of some proteins.

CHAPERONINS

A family of chaperone proteins that have a characteristic double-ring structure. One class of chaperonin, which functions with a capping cofactor, is found in bacteria (for example, GroEL of Escherichia coli), and in the interior of mitochondria and chloroplasts. A second class of chaperonin, which functions without a capping cofactor, is found in the cytosol of eukaryotes (for example, TCP1-ring complex (TRiC)) and in archaea (thermosomes).

IMMUNOPHILINS

A family of intracellular eukaryotic proteins that contain a structurally related peptidyl-prolyl cistrans isomerase domain and bind immunosuppressive drugs, such as FK506 (rapamycin).

J DOMAIN

A conserved domain that stimulates ATP hydrolysis by chaperones of the 70-kDa heat-shock protein (Hsp70) family. It was first identified in the Escherichia coli co-chaperone DnaJ, but it is also found in DnaJ homologues in eukaryotes, as well as in several co-chaperones that recruit Hsp70 proteins for specific cellular processes.

WD40 REPEAT

A poorly conserved repeat sequence of 40–60 amino acids, which usually ends with Trp-Asp (WD). Several consecutive repeats fold into a circular structure, a so-called β-propeller, in which each blade is a four-stranded β-sheet. This domain is found in proteins that have various different functions.

TETRATRICOPEPTIDE REPEAT-CLAMP DOMAIN

(TPR-clamp domain). TPR motifs are 34-amino-acid degenerate repeat sequences. Some eukaryotic co-chaperones of the cytosolic 70- and 90-kDa heat-shock proteins (HSC70 and HSP90, respectively) contain specialized TPR-clamp domains, which consist of three TPR motifs and 'clamp' a conserved aspartate residue at the carboxyl termini of HSC70 and HSP90.

SARCOMERE

A specialized structure in striated muscle, in which actin filaments contact numerous molecules of myosin, the motor protein that makes up muscle thick filaments. The movement of actin and myosin filaments past each other provides the driving force for muscle contraction.

KINETOCHORES

Specialized regions on chromosomes that are connected to microtubules and motor proteins during cell division in eukaryotes. Kinetochores function in the separation of chromosome pairs.

SKP1–CULLIN–F-BOX UBIQUITIN-LIGASE COMPLEX

A conserved protein complex in eukaryotes that is named on the basis of three of its characteristic components. It transfers ubiquitin onto specific substrate proteins and polyubiquitylated proteins are targeted for proteasomal degradation. It functions in the regulated degradation of proteins and is also essential for cell division.

U-BOX-TYPE E3 UBIQUITIN LIGASE

A class of ubiquitin-ligase domain that can transfer ubiquitin onto substrate proteins. It was first identified in the Ufd2 protein of Saccharomyces cerevisiae, and has since been found in several proteins from both yeast and mammals.

AAA PROTEINS

'ATPases associated with various cellular activities'. A superfamily of structurally related proteins (usually hexameric), a subset of which function to unfold proteins and a related subset of which function as proteases.

CAPACITOR OF MORPHOLOGY

The 90-kDa heat-shock protein (HSP90) has been proposed to buffer cryptic genetic variability by allowing mutated regulatory proteins to function normally. Phenotypes or morphologies that are associated with these mutations are only observed under stress conditions, when HSP90 function is reduced or overloaded, and favourable phenotypes can then be selected in a heritable manner. This mechanism is referred to as genetic capacitance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, J., Agashe, V., Siegers, K. et al. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5, 781–791 (2004). https://doi.org/10.1038/nrm1492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing