Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sorting out the nuclear envelope from the endoplasmic reticulum

Abstract

Although the interphase nuclear envelope is continuous with the endoplasmic reticulum, it is distinct from the endoplasmic reticulum in both form and composition. In metazoans, the nuclear envelope breaks down during mitosis and is thought to be completely reabsorbed by the endoplasmic reticulum. How these near neighbours are sorted out at the end of mitosis is an interesting mystery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nuclear envelope and inner-nuclear-membrane-protein sorting during interphase.
Figure 2: Steps involved in postmitotic nuclear-envelope formation in vitro.
Figure 3: A model for the segregation of nuclear-envelope-specific proteins from bulk endoplasmic reticulum in vivo.
Figure 4: RAB-dependent endosome membrane domains.

Similar content being viewed by others

References

  1. Foisner, R. Inner nuclear membrane proteins and the nuclear lamina. J. Cell Sci. 114, 3791–3792 (2001).

    CAS  PubMed  Google Scholar 

  2. Holmer, L. & Worman, H. J. Inner nuclear membrane proteins: functions and targeting. Cell. Mol. Life Sci. 58, 1741–1747 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, L., Guan, T. & Gerace, L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137, 1199–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Voeltz, G. K., Rolls, M. M. & Rapoport, T. A. Structural organization of the endoplasmic reticulum. EMBO Rep. 3, 944–950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Macaulay, C. & Forbes, D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPγS, and BAPTA. J. Cell Biol. 132, 5–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Soullam, B. & Worman, H. J. The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J. Cell Biol. 120, 1093–1100 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).

    CAS  PubMed  Google Scholar 

  13. Mislow, J. M. K., Kim, M. S., Davis, D. B. & McNally, E. M. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, associates with lamin-A/C. J. Cell Sci. 115, 61–70 (2002).

    CAS  PubMed  Google Scholar 

  14. Foisner, R. & Gerace, L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73, 1267–1279 (1993).

    CAS  PubMed  Google Scholar 

  15. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pyrpasopoulou, A., Meier, J., Maison, C., Simos, G. & Georgatos, S. D. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J. 15, 7108–7119 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Segura-Totten, M., Kowalski, A. K., Craigie, R. & Wilson, K. L. Barrier-to-autointegration factor: major roles in chromatin decondensation and nuclear assembly. J. Cell Biol. 158, 475–485 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newport, J. W., Wilson, K. L. & Dunphy, W. G. A lamin-independent pathway for nuclear envelope assembly. J. Cell Biol. 111, 2247–2259 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J. et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11, 3937–3947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moir, R. D., Yoon, M., Khuon, S. & Goldman, R. D. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vigers, G. P. & Lohka, J. J. A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs. J. Cell Biol. 112, 545–556 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Drummond, S. et al. Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J. Cell Biol. 144, 225–240 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collas, P. & Courvalin, J. C. Sorting nuclear membrane proteins at mitosis. Trends Cell Biol. 10, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wiese, C., Goldberg, M. W., Allen, T. D. & Wilson, K. L. Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent “envelope smoothing” event. J. Cell Sci. 110, 1489–1502 (1997).

    CAS  PubMed  Google Scholar 

  25. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hetzer, M., Bilbao-Cortés, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Walther, T. C. et al. RanGTP mediates nuclear pore complex assembly. Nature 424, 689–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, 177–184 (2002).

    Article  Google Scholar 

  30. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–40 (2000).

    Article  CAS  Google Scholar 

  31. Sönnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5 and Rab11. J. Cell Biol. 149, 901–913 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–119 (2001).

    Article  CAS  Google Scholar 

  33. Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larijani, B., Barona, T. M. & Poccia, D. L. Role for phosphatidylinositol in nuclear envelope formation. Biochem. J. 356, 495–501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I wish to thank P. Riedinger, M. Hetzer and M. Zerial for the figures, and J. Ellenberg, M. Knop, M. Hetzer and W. Antonin for critical comment on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

BAF

HP1

LAP2β

NPL4

NUP107

NUP160

p97

POM121

RAB4

RAB5

RAB11

SAR1

UFD1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattaj, I. Sorting out the nuclear envelope from the endoplasmic reticulum. Nat Rev Mol Cell Biol 5, 65–69 (2004). https://doi.org/10.1038/nrm1263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing