Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Titin: properties and family relationships

Key Points

  • Titin is the largest known protein (3 MDa) and consists principally of 300 immunoglobulin and fibronectin domains. Pairs of its string-like molecules are arranged in an antiparallel manner to span the entire sarcomere in vertebrate striated muscle (2 μm), with their amino- and carboxy-terminal ends in the Z- and M-lines, respectively.

  • More than half of the titin molecule is attached to the thick filament, where it might control the exact assembly of myosin and other filament components. Between the end of the thick filament and the Z-line, titin forms elastic connections; these are the main source of passive elasticity in muscle, with isoforms varying widely in size and compliance in muscles of different stiffness.

  • Titin elasticity has been studied in situ (for instance, by monitoring epitope movement) and in individual molecules (using new single-molecule techniques, such as optical tweezers and atomic-force spectroscopy). The elastic mechanism initially involves straightening the molecule, followed by unfolding of the polypeptide chain; this occurs first in the small PEVK region, in which the secondary structure is not well understood.

  • Near the middle of the thick filament, titin has a kinase domain, but the functions and substrate(s) are not fully understood. Both ends of the molecule have potential phosphorylation sites that are likely to be involved in signalling, assembly and turnover mechanisms. Invertebrate muscles contain no exact homologue of titin that spans half the sarcomere. Instead, there is a range of smaller molecules in different parts of the sarcomere, reflecting the greater structural and functional diversity of invertebrate muscles.

  • The main functions of the titin family seem to be to interconnect myosin and actin filaments axially and provide passive elasticity; this also centres thick filaments between Z lines, so that equal forces are developed by myosin in both halves of the sarcomere. Related intracellular members of the immunoglobulin superfamily provide transverse deformable connections in the sarcomere.

Abstract

In striated muscles, the rapid production of macroscopic levels of force and displacement stems directly from highly ordered and hierarchical protein organization, with the sarcomere as the elemental contractile unit. There is now a wealth of evidence indicating that the giant elastic protein titin has important roles in controlling the structure and extensibility of vertebrate muscle sarcomeres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of titin molecules.
Figure 2: Scheme for the tertiary structure of titin.
Figure 3: Force-extension relationship of single titin molecules measured by optical tweezers.
Figure 4: Scheme for tertiary structure in Z-line and M-line proteins.
Figure 5: Sarcomere structure at different degrees of extension.

Similar content being viewed by others

References

  1. Maruyama, K., Natori, R. & Nonomura, Y. New elastic protein from muscle. Nature 262, 58–60 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, K., McClure, J. & Tu, A. Titin: major myofibrillar components of striated muscle. Proc. Natl Acad. Sci. USA 76, 3698–3702 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maruyama, K., Kimura, S., Yoshidomi, H., Sawada, H. & Kikuchi, M. Molecular size and shape of β-connectin, an elastic protein of striated muscle. J. Biochem. 95, 1423–1433 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Trinick, J., Knight, P. & Whiting, A. Purification and properties of native titin. J. Mol. Biol. 180, 331–356 (1984). Reports the first experimental evidence of the multi-domain structure of titin, as observed by electron microscopy of isolated molecules.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, K., Ramirez-Mitchell, R. & Palter, D. Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc. Natl Acad. Sci. USA 81, 3685–3689 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nave, R., Furst, D. O. & Weber, K. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J. Cell Biol. 109, 2177–2187 (1989). Demonstrates that titin spans half the sarcomere and shows straightened, polar molecules.

    Article  CAS  PubMed  Google Scholar 

  7. Bang, M. L. et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I–band linking system. Circ. Res. 89, 1065–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Labeit, S., Gautel, M., Lakey, A. & Trinick, J. Towards a molecular understanding of titin. EMBO J. 11, 1711–1716 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995). Complete titin sequence, including the discovery of splice isoforms.

    Article  CAS  PubMed  Google Scholar 

  10. Freiburg, A. et al. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 86, 1114–1121 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Greaser, M. L., Sebestyen, M. G., Fritz, J. D. & Wolff, J. A. cDNA sequence of rabbit cardiac titin/connectin. Adv. Biophys. 33, 13–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Yajima, H. et al. A 11.5-kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem. Biophys. Res. Comm. 223, 160–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Yajima, H. et al. Molecular cloning of a partial cDNA clone encoding the C-terminal region of chicken breast muscle connectin. Zool. Sci. 13, 119–123 (1996).

    Article  CAS  Google Scholar 

  14. Benian, G. M., Kiff, J. E., Neckelmann, N., Moerman, D. G. & Waterston, R. H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 342, 45–50 (1989). First report of an intracellular muscle protein that was shown to be a member of the Ig superfamily.

    Article  CAS  PubMed  Google Scholar 

  15. Pfuhl, M. & Pastore, A. Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin — a new member of the I-set. Structure 3, 391–401 (1995). Provided the first experimental confirmation of the Ig-like structure of titin domains.

    Article  CAS  PubMed  Google Scholar 

  16. Improta, S., Politou, A. S. & Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4, 323–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Muhle-Goll, C., Pastore, A. & Nilges, M. The 3D structure of a type I module from titin: a prototype of intracellular fibronectin type III domains. Structure 6, 1291–1302 (1998).

    Article  Google Scholar 

  18. Mayans, O., Wuerges, J., Canela, S., Gautel, M. & Wilmanns, M. Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9, 331–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gautel, M., Leonard, K. & Labeit, S. Phosphorylation of KSP motifs in the C-terminal region of titin in differentiating myoblasts. EMBO J. 12, 3827–3834 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sebestyen, M. G., Wolff, J. A. & Greaser, M. L. Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J. Cell Sci. 108, 3029–3037 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Tskhovrebova, L. & Trinick, J. Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J. Mol. Biol. 310, 755–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fraternali, F. & Pastore A. Modularity and homology: modelling of the type II module family from titin. J. Mol. Biol. 290, 581–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Amodeo, P., Fraternali, F., Lesk, A. M. & Pastore, A. Modularity and homology: modelling of the titin type I modules and their interfaces. J. Mol. Biol. 311, 283–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Gregorio, C. C. et al. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J. Cell Biol. 143, 1013–1027 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Obermann, W. M. J., Gautel, M., Weber, K. & Furst, D. O. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 16, 211–220 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gautel, M., Goulding, D., Bullard, B., Weber, K. & Fürst, D. O. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J. Cell Sci. 109, 2747–2754 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kolmerer, B., Olivieri, N., Witt, C. C., Herrmann, B. G. & Labeit, S. Genomic organization of M line titin and its tissue-specific expression in two distinct isoforms. J. Mol. Biol. 256, 556–563 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Sorimachi, H. et al. Tissue-specific expression and α-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J. Mol. Biol. 270, 688–695 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Young, P., Ferguson, C., Banuelos, S. & Gautel, M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of α-actinin. EMBO J. 17, 1614–1624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mues, A., van der Ven, P. F. M., Young, P., Furst, D. O. & Gautel, M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett. 428, 111–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Young, P., Ehler, E. & Gautel, M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J. Cell Biol. 154, 123–136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trombitas, K., Greaser, M. L. & Pollack, G. H. Interaction between titin and thin filaments in intact cardiac muscle. J. Muscle Res. Cell Motil. 18, 345–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Freiburg, A. & Gautel, M. A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur. J. Biochem. 235, 317–323 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Greaser, M. Identification of new repeating motifs in titin. Proteins 43, 145–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Gutierrez-Cruz, G., Van Heerden, A. H. & Wang, K. Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J. Biol. Chem. 276, 7442–7449 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, K., Kan, L. S. & Wang, K. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 40, 3427–3438 (2001). Evidence of the preferred conformation of the PEVK polypeptide.

    Article  CAS  PubMed  Google Scholar 

  37. Squire, J. et al. Myosin rod-packing schemes in vertebrate muscle thick filaments. J. Struct. Biol. 122, 128–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Cazorla, O. et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ. Res. 86, 59–67 (2000). Evidence for expression of multiple titin isoforms in cardiac muscles.

    Article  CAS  PubMed  Google Scholar 

  39. Liversage, A. D., Holmes, D., Knight, P. J., Tskhovrebova, L. & Trinick, J. Titin and the sarcomere symmetry paradox. J. Mol. Biol. 305, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Schmid, M. F. & Epstein, H. F. Muscle thick filaments are rigid coupled tubules, not flexible ropes. Cell Motil. Cytoskeleton 41, 195–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Muhle-Goll, C. et al. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1 — a possible role in the Frank–Starling mechanism of the heart. J. Mol. Biol. 313, 431–447 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Whiting, A., Wardale, J. & Trinick, J. Does titin regulate the length of muscle thick filaments? J. Mol. Biol. 205, 263–268 (1989). The protein-ruler model of titin control of thick-filament assembly.

    Article  CAS  PubMed  Google Scholar 

  43. Van der Ven, P. F., Ehler, E., Perriard, J. C. & Furst, D. O. Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J. Muscle Res. Cell Motil. 20, 569–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Van der Ven, P. F., Bartsch, J. W., Gautel, M. Jockusch, H. & Furst, D. O. A functional knock-out of titin results in defective myofibril assembly. J. Cell Sci. 113, 1405–1414 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Horowits, R., Kempner, E. S., Bisher, M. E. & Podolsky, R. J. A physiological role for titin and nebulin in skeletal muscle. Nature 323, 160–164 (1986). Evidence of how titin centres thick filaments in the sarcomere.

    Article  CAS  PubMed  Google Scholar 

  46. Granzier, H. & Labeit, S. Cardiac titin: an adjustable multi-functional spring. J. Physiol. 541, 335–342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soteriou, A., Clarke, A., Martin, S. & Trinick, J. Titin folding energy and elasticity. Proc. R. Soc. Lond. B 254, 83–86 (1993).

    Article  CAS  Google Scholar 

  48. Erickson, H. P. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl Acad. Sci. USA 91, 10114–10118 (1994). The first theoretical consideration of mechanical unfolding in titin domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linke, W. A., Ivemeyer, M., Mundel, P., Stockmeier, M. R. & Kolmerer, B. Nature of PEVK-titin elasticity in skeletal muscle. Proc. Natl Acad. Sci. USA 95, 8052–8057 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Linke, W. A., Stockmeier, M. R., Ivemeyer, M., Hosser, H. & Mundel, P. Characterizing titin's I-band Ig domain region as an entropic spring. J. Cell Sci. 111, 1567–1574 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Trombitas, K., Greaser, M., French, G. & Granzier, H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J. Struct. Biol. 122, 188–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Trombitas, K. et al. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys. J. 79, 3226–3234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minajeva, A., Kulke, M., Fernandez, J. M. & Linke, W. A. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys. J. 80, 1442–1451 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science, 276, 1112–1116 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997). One of the first measurements of the force-extension relationship of single titin molecules. Unfolding of Ig domains after fast stretches is illustrated (see also references 54 and 58).

    Article  CAS  PubMed  Google Scholar 

  56. Li, H. et al. Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc. Natl Acad. Sci. USA 98, 10682–10686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watanabe, K. et al. Molecular mechanics of cardiac titin's PEVK and N2B spring elements. J. Biol. Chem. 277, 11549–11558 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Trombitas, K., Wu, Y., Labeit, D., Labeit, S. & Granzier, H. Cardiac titin isoforms are coexpressed in the half sarcomere and extend independently. Am. J. Physiol. Heart Circ. Physiol. 281, H1793–H1799 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Watanabe, K., Muhle-Goll, C., Kellermayer, M. S. Z., Labeit, S. & Granzier, H. Different molecular mechanics displayed by titin's constitutively and differentially expressed tandem Ig segments. J. Struct. Biol. 137, 248–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ranatunga, K. W. Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. J. Muscle Res. Cell Motil. 22, 399–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Goulding, D., Bullard, B. & Gautel, M. A survey of in situ sarcomere extension in mouse skeletal muscle. J. Muscle Res. Cell Motil. 18, 465–472 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Brockwell, D. J. et al. The effect of core destabilization on the mechanical resistance of I27. Biophys. J. 83, 458–472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, P. M. et al. Hidden complexity in the mechanical properties of titin. Nature 422, 446–449 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Furukawa, T. et al. Specific interaction of the potassium channel β-subunit minK with the sarcomeric protein T-cap suggests a T-tubule–myofibril linking system. J. Mol. Biol. 313, 775–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Centner, T. et al. Identification of muscle specific RING finger proteins as potential regulators of the titin kinase domain. J. Mol. Biol. 306, 717–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. McElhinny, A. S., Kakinuma, K., Sorimachi, H., Labeit, S. & Gregorio, C. C. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J. Cell Biol. 157, 125–136 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mayans, O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Flaherty, D. B. et al. Titins in C. elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions. J. Mol. Biol. 323, 533–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Isaacs, W. B., Kim, I. S., Struve, A. & Fulton, A. B. Association of titin and myosin heavy chain in developing skeletal muscle. Proc. Natl Acad. Sci. USA 89, 7496–7500 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Komiayama, M., Kouchi, K., Maruyama, K. & Shimada, Y. Dynamics of actin and assembly of connectin (titin) during myofibrillogenesis in embryonic chick cardiac muscle cells in vitro. Dev. Dynam. 196, 291–299 (1993).

    Article  Google Scholar 

  73. Soeno, Y. et al. Organization of connectin/titin filaments in sarcomeres of differentiating chicken skeletal muscle cells. Mol. Cell Biochem. 190, 125–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Peckham, M., Young, P. & Gautel, M. Constitutive and variable regions of Z-disk titin/connectin in myofibril formation: a dominant-negative screen. Cell Struct. Funct. 22, 95–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Pizon, V. et al. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J. Cell Sci. 115, 4469–4482 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nicholas, G. et al. Titin-Cap associates with, and regulates secretion of, myostatin. J. Cell. Physiol. 193, 120–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Kontrogianni-Konstantopoulos, A. & Bloch, R. J. The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. J. Biol. Chem. 278, 3985–3991 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Bagnato, P., Barone, V., Giacomello, E., Rossi, D. & Sorrentino, V. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J. Cell Biol. 160, 245–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gotthardt, M. et al. Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J. Biol. Chem. 278, 6059–6065 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Xu, X. et al. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nature Genet. 30, 205–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet. 30, 201–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Itoh-Satoh, M. et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Comm. 291, 385–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garvey, S. M., Rajan, C., Lerner, A. P., Frankel, W. N. & Cox, G. A. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79, 146–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Hakeda, S., Endo, S. & Saigo, K. Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J. Cell Biol. 148, 101–114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kolmerer, B. et al. Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans. J. Mol. Biol. 296, 435–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Machado, C. & Andrew, D. J. D-titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151, 639–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y., Featherstone, D., Davis, W., Rushton, E. & Broadie, K. Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J. Cell Sci. 113, 3103–3115 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Fukuzawa, A. et al. Invertebrate connectin spans as much as 3.5 μm in the giant sarcomeres of crayfish claw muscle. EMBO J. 20, 4826–4835 (2001). Provides data on a titin-related protein in giant invertebrate muscle sarcomeres and evidence for multiple, unique sequence regions that are related to PEVK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Champagne, M. B., Edwards, K. A., Erickson, H. P. & Kiehart, D. P. Drosophila stretchin-MLCK is a novel member of the titin/myosin light chain kinase family. J. Mol. Biol. 300, 759–777 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Southgate, R. & Ayme-Southgate, A. Alternative splicing of an amino-terminal PEVK-like region generates multiple isoforms of Drosophila projectin. J. Mol. Biol. 313, 1035–1043 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Kulke, M. et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J. Cell Biol. 154, 1045–1057 (2001). Experimental evidence that the smallest titin-related invertebrate proteins might contribute to passive elasticity of muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Van Straaten, M. et al. Association of kettin with actin in the Z-disc of insect flight muscle. J. Mol. Biol. 285, 1549–1562 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Hu, D. H. et al. Projectin is an invertebrate connectin (titin): isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J. Muscle Res. Cell Motil. 11, 497–511 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Nave, R., Furst, D., Vinkemeier, U. & Weber, K. Purification and physical properties of nematode mini-titins and their relation to twitchin. J. Cell Sci. 98, 491–496 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Vibert, P., Edelstein, S. M., Castellani, L. & Elliott, B. W. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J. Muscle Res. Cell Motil. 14, 598–607 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Manabe, T., Kawamura, Y., Higuchi, H., Kimura, S. & Maruyama, K. Connectin, giant elastic protein, in giant sarcomeres of crayfish claw muscle. J. Muscle Res. Cell Motil. 14, 654–665 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Maki, S., Ohtani, Y., Kimura, S. & Maruyama, K. Isolation and characterization of a kettin-like protein from crayfish claw muscle. J. Muscle Res. Cell Motil. 16, 579–585 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Bullard, B. & Leonard, K. Modular proteins of insect muscle. Adv. Biophys. 33, 211–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki, J., Kimura, S. & Maruyama, K. Electron microscopic filament lengths of connectin and its fragments. J. Biochem. 116, 406–410 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Tskhovrebova, L. & Trinick, J. Direct visualization of extensibility in isolated titin molecules. J. Mol. Biol. 265, 100–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Langanger, G. et al. The molecular organization of myosin in stress fibers of cultured cells. J. Cell Biol. 102, 200–209 (1986).

    Article  CAS  PubMed  Google Scholar 

  103. Kargacin, G. J., Cooke, P. H., Abramson, S. B. & Fay, F. S. Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J. Cell Biol. 108, 1465–1475 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Benian, G. M., Ayme-Southgate, A. & Tinley, T. L. The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev. Physiol. Biochem. Pharmacol. 138, 235–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Machado, C., Sunkel, C. E. & Andrew, D. J. Human autoantibodies reveal titin as a chromosomal protein. J. Cell Biol. 141, 321–333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Siegman, M. J. et al. Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc. Natl Acad. Sci. USA 95, 5383–5388 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eilertsen, K. J. & Keller, T. C. Identification and characterization of two huge protein components of the brush border cytoskeleton: evidence for a cellular isoform of titin. J. Cell Biol. 119, 549–557 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Eilertsen, K. J., Kazmierski, S. T. & Keller, T. C. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J. Cell Biol. 126, 1201–1210 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, K. & Keller, T. C. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. J. Cell Biol. 156, 101–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Millman, B. M. The filament lattice of striated muscle. Physiol. Rev. 78, 359–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Noguchi, J. et al. Complete primary structure and tissue expression of chicken pectoralis M-protein. J. Biol. Chem. 267, 20302–20310 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Steiner, F., Weber, K. & Furst, D. O. M band proteins myomesin and skelemin are encoded by the same gene: analysis of its organization and expression. Genomics 56, 78–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Djinovic-Carugo, K., Gautel, M., Ylannec, J. & Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513, 119–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Winkler, J., Lunsdorf, H. & Jockusch, B. M. Flexibility and fine structure of smooth-muscle α-actinin. Eur. J. Biochem. 248, 193–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Price, M. G. & Gomer, R. H. Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins. J. Biol. Chem. 268, 21800–21810 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Vaughan, K. T., Weber, F. E. & Fischman, D. A. cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86kD protein. Symp. Soc. Exp. Biol. 46, 167–177 (1992).

    CAS  PubMed  Google Scholar 

  117. Benian, G. M., Tinley, T. L., Tang, X. X. & Borodovsky, M. The Caenorhabditis elegans gene unc-89, required for muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J. Cell Biol. 132, 835–848 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Barry, C. P., Xie, J., Lemmon, V. & Young, A. P. Molecular characterization of a multi-promoter gene encoding a chicken filamin protein. J. Biol. Chem. 268, 25577–25586 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Broderick, M. J. F. & Winder, S. J. Towards a complete atomic structure of spectrin family proteins. J. Struct. Biol. 137, 184–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Rief, M., Pascual, J., Saraste, M. & Gaub, H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Furuike, S., Ito, T. & Yamazaki, M. Mechanical unfolding of single filamin-A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett. 498, 72–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Nave, R. & Weber, K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z-band and A-band — purification and molecular characterization of invertebrate mini-titin. J. Cell Sci. 95, 535–544 (1990).

    Article  CAS  PubMed  Google Scholar 

  123. Moerman, D. G., Benian, G. M., Barstead R. J., Scheifer, L. & Waterson, R. H. Identification and intracellular localization of the unc-22 gene product of C. elegans. Genes Dev. 2, 93–105 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Vigoreaux, J. O., Saide, J. D. & Pardue, M. L. Structurally different Drosophila striated muscles utilize distinct variants of Z-band-associated proteins. J. Muscle Res. Cell Motil. 12, 340–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  125. Yamasaki, R., Wu, Y., McNabb, M., Greaser, M., Labeit, S. & Granzier, H. Protein kinase A phosphorylates titin's cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ. Res. 90, 1181–1188 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A considerable number of reports illustrating the main points of our review were not cited due to space limitations. The authors apologize to those whose work is not represented or is cited only indirectly. Research from the authors' laboratory was supported by grants from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

α-actinin

actin

dystrophin

filamin

MURF1

MURF2

myomesin

myosin

obscurin

telethonin

titin

unc-89

Glossary

RESTING LENGTH

The length to which the relaxed sarcomeres freely shorten in the absence of external load.

OPERATING RANGE

The length range over which sarcomeres shorten and extend in muscle in vivo.

MYOFIBRIL

The structural apparatus of striated muscle, consisting of elemental contractile units — the sarcomeres — concatenated at their boundaries, the Z-lines.

M-LINE

The transverse line at the midpoint of the sarcomere. The M-line consists of proteins that connect the thick filaments at their midpoint.

IMMUNOGLOBULIN-LIKE DOMAIN

A type of polypeptide fold that was first identified in antibodies and extracellular-matrix proteins. The domain contains 100 amino acids and is folded into two sandwiched β-pleated sheets of 3 or 4 strands.

Z-LINE

A region of muscle sarcomere to which the plus ends of actin filaments are attached. It appears as a dark transverse line in micrographs.

INDIRECT FLIGHT MUSCLES

High-frequency muscles that are also known as asynchronous or fibrillar muscles. In contrast to synchronous muscles, in which there is a direct correspondence between stimulus (action potential) and contractile cycle, indirect muscles can respond to an individual stimulus with a series of contractile cycles in an oscillatory fashion. In insects that use indirect muscles, the wings and thorax form a mechanically resonant system that allows muscles to oscillate with the resonant frequency.

POLYPROLINE TYPE II HELIX

A preferred conformation for proline-rich regions of protein sequences, with an axial translation of 3.20 Å and three residues in each turn of a left-handed helix. Other common polypeptide conformations are α-helix and β-structure.

SOLEUS MUSCLE

A muscle in the leg that controls postural stability. It contains one of the largest titin isoforms. This results in sarcomeres that have a comparatively long resting length and are more compliant than in other muscles. At the other end of this range is cardiac muscle, which has short, stiff sarcomeres.

OPTICAL TWEEZERS

A technique that is used for the manipulation of individual protein molecules and is based on the radiation pressure of light. A micron-sized transparent bead tends to stay at the focus of a laser beam. When the bead is attached to a protein molecule, movement of the laser beam can be used to impart small forces and displacements to the protein.

ATOMIC-FORCE SPECTROSCOPY

An imaging and force-measuring (pico/nano-Newton range) technique that is based on a sharp probing tip attached to a flexible cantilever. The probe can scan across a surface in a raster to form an image. Alternatively, the probe can pull upwards to measure forces in a molecule stretched between the probe and a surface.

RING-FINGER PROTEINS

A family of proteins that are structurally defined by the presence of the zinc-binding RING-finger motif. The RING consensus sequence is: CX2CX(9–39)CX(1–3)HX(2–3)C/HX2CX(4–48)CX2C. The cysteines and histidines represent metal binding sites. The first, second, fifth and sixth of these bind one zinc ion and the third, fourth, seventh and eighth bind the second.

TRANSVERSE (T)-TUBULES

A system of surface-connected membranes in muscle that enables a nerve impulse to travel to the interior of the muscle fibre.

SARCOLEMMA

The membrane (plasmalemma) of a muscle cell that makes an osmotic barrier around the contents of the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tskhovrebova, L., Trinick, J. Titin: properties and family relationships. Nat Rev Mol Cell Biol 4, 679–689 (2003). https://doi.org/10.1038/nrm1198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing