Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

When ubiquitin meets ubiquitin receptors: a signalling connection

Abstract

Ubiquitylation is emerging as a versatile device for controlling cellular functions. Here, we propose that monoubiquitylation is rapidly induced by signalling events and allows the establishment of protein–protein interactions between monoubiquitylated proteins and partners that contain distinct ubiquitin-binding domains. We also put forward speculative models for the regulation of monoubiquitylation versus polyubiquitylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin-receptor proteins.
Figure 2: Monoubiquitylation and signalling.
Figure 3: Models to explain UIM function in monoubiquitylation.

Similar content being viewed by others

References

  1. Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000).

    Article  CAS  Google Scholar 

  2. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  3. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    CAS  Google Scholar 

  4. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  5. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).

    Article  CAS  Google Scholar 

  6. Buchberger, A. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 12, 216–221 (2002).

    Article  CAS  Google Scholar 

  7. Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biol. 3, 939–943 (2001).

    Article  CAS  Google Scholar 

  8. Ortolan, T. G. et al. The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nature Cell Biol. 2, 601–608 (2000).

    Article  CAS  Google Scholar 

  9. Rao, H. & Sastry, A. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691–11695 (2002).

    Article  CAS  Google Scholar 

  10. Bertolaet, B. L. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Struct. Biol. 8, 417–422 (2001).

    Article  CAS  Google Scholar 

  11. Dieckmann, T. et al. Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nature Struct. Biol. 5, 1042–1047 (1998).

    Article  CAS  Google Scholar 

  12. Mueller, T. D. & Feigon, J. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein–protein interactions. J. Mol. Biol. 319, 1243–1255 (2002).

    Article  CAS  Google Scholar 

  13. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  Google Scholar 

  14. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  Google Scholar 

  15. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  Google Scholar 

  16. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    Article  CAS  Google Scholar 

  17. Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).

    Article  CAS  Google Scholar 

  18. Katz, M. et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 3, 740–751 (2002).

    Article  CAS  Google Scholar 

  19. Oldham, C. E., Mohney, R. P., Miller, S. L., Hanes, R. N. & O'Bryan, J. P. The ubiquitin-interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Curr. Biol. 12, 1112–1116 (2002).

    Article  CAS  Google Scholar 

  20. Shekhtman, A. & Cowburn, D. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem. Biophys. Res. Commun. 296, 1222–1227 (2002).

    Article  CAS  Google Scholar 

  21. Ponting, C. P., Cai, Y. D. & Bork, P. The breast cancer gene product TSG101: a regulator of ubiquitination? J. Mol. Med. 75, 467–469 (1997).

    Article  CAS  Google Scholar 

  22. Bishop, N., Horman, A. & Woodman, P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein–ubiquitin conjugates. J. Cell Biol. 157, 91–101 (2002).

    Article  CAS  Google Scholar 

  23. Pornillos, O., Alam, S. L., Davis, D. R. & Sundquist, W. I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  24. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  25. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    Article  CAS  Google Scholar 

  26. Donaldson, K. M., Yin, H., Gekakis, N., Supek, F. & Joazeiro, C. A. Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr. Biol. 13, 258–262 (2003).

    Article  CAS  Google Scholar 

  27. Shih, C. S. et al. A ubiquitin-binding motif required for intramolecular monoubiquitination, the CUE domain. EMBO J. 17, 1273–1281 (2003).

    Article  Google Scholar 

  28. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  29. Yaffe, M. B. & Smerdon, S. J. Phosphoserine/threonine binding domains: you can't pSERious? Structure (Camb.) 9, R33–R38 (2001).

    Article  CAS  Google Scholar 

  30. van Delft, S., Govers, R., Strous, G. J., Verkleij, A. J. & van Bergen en Henegouwen, P. M. Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–14016 (1997).

    Article  CAS  Google Scholar 

  31. Haglund, K., Shimokawa, N., Szymkiewicz, I. & Dikic, I. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc. Natl Acad. Sci. USA 99, 12191–12196 (2002).

    Article  CAS  Google Scholar 

  32. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    CAS  PubMed  Google Scholar 

  33. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  Google Scholar 

  34. Morrione, A. et al. mGrb10 interacts with Nedd4. J. Biol. Chem. 274, 24094–24099 (1999).

    Article  CAS  Google Scholar 

  35. Courbard, J. R. et al. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J. Biol. Chem. 277, 45267–45275 (2002).

    Article  CAS  Google Scholar 

  36. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  37. Taniguchi, T. & D'Andrea, A. D. The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood 100, 2457–2462 (2002).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  Google Scholar 

  40. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  41. Hicke, L. Getting' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9, 107–112 (1999).

    Article  CAS  Google Scholar 

  42. Hicke, L. A new ticket for entry into budding vesicles — ubiquitin. Cell 106, 527–530 (2001).

    Article  CAS  Google Scholar 

  43. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  Google Scholar 

  44. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  Google Scholar 

  45. Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616–3628 (1999).

    Article  CAS  Google Scholar 

  46. Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A. & Schwartz, A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 15, 3806–3812 (1996).

    Article  CAS  Google Scholar 

  47. Dunn, R. & Hicke, L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J. Biol. Chem. 276, 25974–25981 (2001).

    Article  CAS  Google Scholar 

  48. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).

    Article  CAS  Google Scholar 

  49. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  Google Scholar 

  50. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  Google Scholar 

  51. Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001).

    Article  CAS  Google Scholar 

  52. Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol. 4, 117–123 (2002).

    Article  CAS  Google Scholar 

  53. Klapisz, E. et al. A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J. Biol. Chem. 277, 30746–30753 (2002).

    Article  CAS  Google Scholar 

  54. Kanelis, V., Rotin, D. & Forman-Kay, J. D. Solution structure of a Nedd4 WW domain–ENaC peptide complex. Nature Struct. Biol. 8, 407–412 (2001).

    Article  CAS  Google Scholar 

  55. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  56. Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

    Article  CAS  Google Scholar 

  57. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  Google Scholar 

  58. Hama, H., Tall, G. G. & Horazdovsky, B. F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J. Biol. Chem. 274, 15284–15291 (1999).

    Article  CAS  Google Scholar 

  59. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  60. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of P.P.D.F. and S.P. is supported by grants from the Italian Association for Cancer Research (AIRC), Human Science Frontier Programme, International Association for Cancer Research (IARC), The European Community (VI Framework) and the Telethon Foundation. We thank L. Hicke for critically reviewing this manuscript. We apologize to the many colleagues whose work could not be properly acknowledged owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Di Fiore.

Related links

Related links

DATABASES

InterPro

14-3-3

CUE

forkhead-associated

PTB

UBA

UEV

UIM

SH2

SH3

WW

Swiss-Prot

CIN85

Ent1

Ent2

Eps15

Eps15R

Hrs

Mms2

Nedd4

Ste2

TAB2

TSG101

Tollip

Vps9

FURTHER INFORMATION

European Institute of Oncology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fiore, P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 4, 491–497 (2003). https://doi.org/10.1038/nrm1124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing