Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signal dispersal and transduction through the endocytic pathway

Key Points

  • uring cell signalling, information that is conveyed by ligands travels from one place, the source, to another, the target, where signals are transduced by receptors. The predominant view of the role of endocytosis in cell signalling used to be that it downregulates signal responses by internalizing the receptors.

  • Recent data indicate, however, that ligands traffic through the endocytic pathway before being released. Some ligands seem to be released together with the membrane that surrounds them. Two types of pathways have being proposed that might explain this process: exosomal transport and transendocytosis.

  • Some ligands, such as the Decapentaplegic (Dpp) morphogen, have been proposed to spread across target tissues by trafficking through cells using the endocytic pathway, instead of by diffusing between cells. Dpp forms a concentration gradient that endows cells with positional information. Endocytosis at the receiving cells is essential for gradient formation and determines the morphogen gradient range.

  • In other cases, for example Wingless (Wg), the ligand spreads by diffusion, and the range of morphogen dispersal is restricted by ligand degradation and recycling through the endocytic pathway.

  • Signal transduction from the endosome (the 'signalling endosome') takes place during epidermal growth factor receptor (EGFR) signalling, nerve growth factor (NGF) and TGF-β signalling. How and why signalling from endosomes occurs are still controversial issues and will be the focus of an increasing number of studies on signalling.

Abstract

During cell signalling, information that is encoded by ligands travels from one place, the source, to another, the target, where signals are transduced by receptors. Evidence has emerged recently that uncovers a role for the endocytic pathway in the secretion of ligands at the source, their dispersion through developing target tissues and the transduction of the signals from endocytic compartments. As a result, endosomes have become the focus of attention in cell–cell communication studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersal of membrane-bound ligands.
Figure 2: Morphogenetic signalling and dispersal of morphogens.
Figure 3: A possible rationale for signalling from endosomes.
Figure 4: SARA mediates endosomal signalling.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  2. Lawrence, P. A. & Struhl, S. Morphogens, compartments, and patterns: lessons from Drosophila? Cell 85, 951–961 (1996).

    CAS  PubMed  Google Scholar 

  3. Papkoff, J. & Schryver, B. Secreted int-1 protein is associated with the cell surface. Mol. Cell. Biol. 10, 2723–2730 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradley, R. S. & Brown, A. M. The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J. 9, 1569–1575 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    CAS  PubMed  Google Scholar 

  6. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    CAS  PubMed  Google Scholar 

  7. Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054 (1999).

    CAS  PubMed  Google Scholar 

  8. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 (1999).

    CAS  PubMed  Google Scholar 

  9. Incardona, J. P. et al. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc. Natl Acad. Sci. USA 97, 12044–12049 (2000). This paper shows that membrane-tethered forms of Shh are released from the expressing cells and endocytosed by other cells, indicating that Shh is released and internalized together with its surrounding membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Strigini, M. & Cohen, S. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997).

    CAS  PubMed  Google Scholar 

  11. Yang, Y. et al. Relationship between dose, distance and time in Sonic hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997).

    CAS  PubMed  Google Scholar 

  12. Capdevila, J., Pariente, F., Sampedro, J., Alonso, J. L. & Guerrero, I. Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless receptor complex in Drosophila embryos. Development 120, 987–998 (1994).

    CAS  PubMed  Google Scholar 

  13. Martin, V., Carrillo, G., Torroja, C. & Guerrero, I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr. Biol. 11, 601–607 (2001).

    CAS  PubMed  Google Scholar 

  14. Cagan, R. L., Kramer, H., Hart, A. C. & Zipursky, S. L. The bride of sevenless and sevenless interaction: internalization of a transmembrane ligand. Cell 69, 393–399 (1992).

    CAS  PubMed  Google Scholar 

  15. Henderson, S., Gao, D., Lambie, E. & Kimble, J. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120, 2913–2924 (1994).

    CAS  PubMed  Google Scholar 

  16. Klueg, K. M., Parody, T. R. & Muskavitch, M. A. T. Complex proteolytic processing acts on Delta, a transmembrane ligand for Notch, during Drosophila development. Mol. Biol. Cell 9, 1709–1723 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klueg, K. & Muskavitch, M. Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: members of the Notch signalling pathway in Drosophila. J. Cell Sci. 112, 3289–3297 (1999).

    CAS  PubMed  Google Scholar 

  18. Greco, V., Hannus, M. & Eaton, S. Argosomes. A potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001). This study shows that membrane-anchored GFP–GPI and myristilated Rho–CFP are released from donor cells and endocytosed in receiving cells, implying that membrane pieces (argosomes) can travel throughout a developing tissue.

    CAS  PubMed  Google Scholar 

  19. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).

    CAS  Google Scholar 

  20. Stoorvogel, W., Kleijmeer, M. J., Geuze, H. J. & Raposo, G. The biogenesis and functions of exosomes. Traffic 3, 321–330 (2002).

    CAS  PubMed  Google Scholar 

  21. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987).

    CAS  PubMed  Google Scholar 

  22. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    CAS  PubMed  Google Scholar 

  23. Mobius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic Perfringolysin O. J. Histochem. Cytochem. 50, 43–56 (2002).

    CAS  PubMed  Google Scholar 

  24. Rabesandratana, H., Toutant, J. -P., Reggio, H. & Vidal, M. Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocytes. Blood 91, 2573–2580 (1998).

    CAS  PubMed  Google Scholar 

  25. Escola, J. -M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    CAS  PubMed  Google Scholar 

  26. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–80 (1999).

    CAS  PubMed  Google Scholar 

  27. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).

    CAS  PubMed  Google Scholar 

  28. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).

    CAS  PubMed  Google Scholar 

  29. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000). This study shows that endocytosis is required for the long-range dispersal of Dpp, and proposes a model of planar transcytosis of Dpp. Together with reference 30, this is the first visualization of concentration-gradient formation of a TGF-β superfamily ligand.

    CAS  PubMed  Google Scholar 

  30. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    CAS  PubMed  Google Scholar 

  31. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    CAS  PubMed  Google Scholar 

  32. Nellen, N., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    CAS  PubMed  Google Scholar 

  33. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).

    CAS  PubMed  Google Scholar 

  34. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002). This paper reports the mathematical modelling of morphogen dispersal by diffusion, which challenges the model of planar transcytosis.

    CAS  PubMed  Google Scholar 

  35. McDowell, N., Gurdon, J. B. & Grainger, D. J. Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo. Int. J. Dev. Biol. 45, 199–207 (2001). The data in this article provide support for activin dispersal by diffusion. It also reports the first visualization of the activin gradient by immunostaining.

    CAS  PubMed  Google Scholar 

  36. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998).

    CAS  PubMed  Google Scholar 

  37. Gonzalez, F., Swales, L. S., Bejsovec, A., Skaer, H. & Martinez Arias, A. Secretion and movement of wingless protein in the epidermis of the Drosophila embryo. Mech. Dev. 35, 43–54 (1991).

    CAS  PubMed  Google Scholar 

  38. Bejsovec, A. & Wieschaus, E. Signaling activities of the Drosophila wingless gene are separately mutable and appear to be transduced at the cell surface. Genetics 139, 309–320 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    CAS  PubMed  Google Scholar 

  40. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001). Using a HRP–Wg fusion protein, this paper shows that the range of Wg signalling is controlled by intracellular degradation of the ligand at the lysosome. It shows that the extent of Wg degradation is determined by EGF signalling.

    CAS  PubMed  Google Scholar 

  41. Martinez Arias, A. in The development of Drosophila melanogaster (ed. Bate, M. A.) 517–608 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  42. Sanson, B., Alexandre, C., Fascetti, N. & Vincent, J. P. Engrailed and Hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98, 207–216 (1999).

    CAS  PubMed  Google Scholar 

  43. Payre, F., Vincent, A. & Carreno, S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  44. Sevrioukov, E. A., He, J. P., Moghrabi, N., Sunio, A. & Kramer, H. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol. Cell 4, 479–486 (1999).

    CAS  PubMed  Google Scholar 

  45. Bazinet, C., Katzen, A. L., Morgan, M., Mahowald, A. P. & Lemmon, S. K. The Drosophila clathrin heavy chain gene function is essential in a multicellular organism. Genetics 134, 1119–1134 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    CAS  PubMed  Google Scholar 

  47. Tall, G. G., Barbieri, M. A., Stahl, P. D. & Horazdovsky, B. F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    CAS  PubMed  Google Scholar 

  48. Lanzetti, L. et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374–377 (2000). Together with reference 47, this study shows how EGF signalling controls endocytic trafficking of the EGFR by regulating Rab5 activity.

    CAS  PubMed  Google Scholar 

  49. Kirchhausen, T. Clathrin adaptors really adapt. Cell 109, 413–416 (2002).

    CAS  PubMed  Google Scholar 

  50. Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    CAS  PubMed  Google Scholar 

  52. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    CAS  Google Scholar 

  53. Hicke, L. A new ticket for entry into budding vesicles — ubiquitin. Cell 106, 527–530 (2001).

    CAS  PubMed  Google Scholar 

  54. van Delft, S., Govers, R., Strous, G. J., Verkleij, A. J. & van Bergen en Henegouwen, P. M. Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–14016 (1997).

    CAS  PubMed  Google Scholar 

  55. Govers, R., ten Broeke, T., van Kerkhof, P., Schwartz, A. L. & Strous, G. J. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J. 18, 28–36 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunn, R. & Hicke, L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J. Biol. Chem. 276, 25974–25981 (2001).

    CAS  PubMed  Google Scholar 

  57. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kao, A. W., Ceresa, B. P., Santeler, S. R. & Pessin, J. E. Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT4 endocytosis without affecting insulin signaling. J. Biol. Chem. 273, 25450–25457 (1998).

    CAS  PubMed  Google Scholar 

  60. Wells, A. et al. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247, 962–964 (1990).

    CAS  PubMed  Google Scholar 

  61. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    CAS  PubMed  Google Scholar 

  62. Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haugh, J. M., Huang, A. C., Wiley, H. S., Wells, A. & Lauffenburger, D. A. Internalized epidermal growth factor receptors participate in the activation of p21ras in fibroblasts. J. Biol. Chem. 274, 34350–34360 (1999).

    CAS  PubMed  Google Scholar 

  64. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000). Together with references 99 and 100, this paper is a good example of FRET studies using in vivo sensors.

    CAS  PubMed  Google Scholar 

  65. Nesterov, A., Lysan, S., Vdovina, I., Nikolsky, N. & Fujita, D. J. Phosphorylation of the epidermal growth factor receptor during internalization in A-431 cells. Arch. Biochem. Biophys. 313, 351–359 (1994).

    CAS  PubMed  Google Scholar 

  66. Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).

    CAS  PubMed  Google Scholar 

  67. Tong, X. K., Hussain, N. K., Adams, A. G., O'Bryan, J. P. & McPherson, P. S. Intersectin can regulate the Ras/MAP kinase pathway independent of its role in endocytosis. J. Biol. Chem. 275, 29894–29899 (2000).

    CAS  PubMed  Google Scholar 

  68. Pouyssegur, J. Signal transduction. An arresting start for MAPK. Science 290, 1515–1518 (2000).

    CAS  PubMed  Google Scholar 

  69. DeFea, K. A. et al. β-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McDonald, P. H. et al. β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    CAS  PubMed  Google Scholar 

  71. Zhang, Y., Moheban, D. B., Conway, B. R., Bhattacharyya, A. & Segal, R. A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. York, R. D. et al. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell. Biol. 20, 8069–8083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuruvilla, R., Ye, H. & Ginty, D. D. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499–512 (2000).

    CAS  PubMed  Google Scholar 

  74. Ehlers, M. D., Kaplan, D. R., Price, D. L. & Koliatsos, V. E. NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J. Cell Biol. 130, 149–156 (1995).

    CAS  PubMed  Google Scholar 

  75. Grimes, M. L., Beattie, E. & Mobley, W. C. A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc. Natl Acad. Sci. USA 94, 9909–9914 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsui-Pierchala, B. A. & Ginty, D. D. Characterization of an NGF-P-TrkA retrograde-signaling complex and age- dependent regulation of TrkA phosphorylation in sympathetic neurons. J. Neurosci. 19, 8207–8218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

    CAS  PubMed  Google Scholar 

  79. Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J.Cell Biol. 138, 411–421 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Incardona, J. P., Gruenberg, J. & Roelink, H. Sonic hedgehog induces the segregation of patched and smoothened in endosomes. Curr. Biol. 12, 983–995 (2002). An analysis of the trafficking of Ptc and Smo in the presence and absence of ligand. These authors propose an interesting hypothesis, whereby ligand binding to Ptc diverts its trafficking towards degradation and thereby frees the trafficking of Smo towards a compartment that is permissive for its signalling activity.

    CAS  PubMed  Google Scholar 

  81. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    CAS  PubMed  Google Scholar 

  82. Massagué, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    PubMed  Google Scholar 

  83. Tsukazaki, T., Chiang, T. A., Davidson, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998). The first report of SARA as a TGF-β signalling mediator. It shows that SARA functions as an adaptor for the receptor and the transcription factor Smad2.

    CAS  PubMed  Google Scholar 

  84. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    CAS  PubMed  Google Scholar 

  85. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    CAS  PubMed  Google Scholar 

  86. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gillooly, D. J., Simonsen, A. & Stenmark, H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wurmser, A. E., Gary, J. D. & Emr, S. D. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 274, 9129–9132 (1999).

    CAS  PubMed  Google Scholar 

  89. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  90. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  92. Miura, S. et al. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol. Cell. Biol. 20, 9346–9355 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hayes, S., Chawla, A. & Corvera, S. TGF-β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Itoh, F. et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 7, 321–331 (2002).

    CAS  PubMed  Google Scholar 

  95. Panopoulou, E. et al. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J. Biol. Chem. 277, 18046–18052 (2002). Together with references 93 and 94, this study analyses the subcellular localization of SARA to the early endosome. It shows that localization of SARA to the endosome is essential to mediate TGF-β signalling.

    CAS  PubMed  Google Scholar 

  96. Penheiter, S. G. et al. Internalization-dependent and -independent requirements for transforming growth factor β receptor signaling via the Smad pathway. Mol. Cell. Biol. 22, 4750–4759 (2002). This paper shows that the receptor–SARA–Smad2 complex forms at the plasma membrane, but that the SARA-mediated phosphorylation of the transcription factor by the receptor requires internalization.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu, L., Chen, Y. G. & Massague, J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation. Nature Cell Biol. 2, 559–562 (2000). This study shows that Smad2 by itself can be imported into the nucleus, but that SARA retains it in the cytoplasm. On phosphorylation, Smad2 is released from SARA and moves to the nucleus.

    CAS  PubMed  Google Scholar 

  98. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    CAS  PubMed  Google Scholar 

  99. Kurokawa, K. et al. A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J. Biol. Chem. 276, 31305–31310 (2001).

    CAS  PubMed  Google Scholar 

  100. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    CAS  PubMed  Google Scholar 

  101. Nagai, T., Sawano, A., Park, E. S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl Acad. Sci. USA 98, 3197–3202 (2001). A description of the cpGFP, a potentially powerful tool for monitoring the conformational changes of signal-transduction factors during signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank C. Böckel, N. Foster, M. Brand and C. Klämbt for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Swiss-Prot

Boss

Cbl

Dally

Dally-like

Delta

Dispatched

Dor

Dpp

Eps15

Hh

Nedd4

Ptc

SARA

Serrate

Shh

Smad2

Smad4

Smo

Tkv

FURTHER INFORMATION

Marcos González-Gaitán's laboratory

Glossary

PRIMORDIUM

Undifferentiated developing tissue.

MORPHOGEN

A molecule, the concentration of which endows cells with positional information that determines the fate of a developing cell.

HEPARAN-SULPHATE PROTEOGLYCAN

(HSPG). A protein that is bound to a complex polysaccharide (heparan-sulphate glycosaminoglycan) present at the cell surface or the extracellular matrix. When bound to ligand, it can have a key signalling role.

HEDGEHOG

(Hh). A morphogenetic ligand that is involved in patterning during development.

GPI

(Glycosylphosphatidylinositol). A lipid species that is characteristic of lipid rafts.

MULTIVESICULAR BODY

A vesicular compartment that contains membrane vesicles and that is an intermediate in the lysosomal degradative pathway. It can also be an intermediate in exosome formation.

TETRASPANINS

A family of proteins that have four transmembrane domains and are associated with lipid rafts.

CLATHRIN

The main component of the endocytic vesicle coat.

WINGLESS

(Wg). A morphogenetic ligand that is involved in patterning during development.

DECAPENTAPLEGIC

A TGF-β-like morphogenetic ligand that is involved in patterning during development.

DYNAMIN

A GTPase that is involved in the fission of the coated pit.

RAB PROTEIN FAMILY

A family of small GTPases that function as key, specific regulators of membrane trafficking.

RAB7

A small GTPase that controls the targeting of endocytic cargo to the lysosome.

RAB5

A small GTPase that controls clathrin-coated pit formation from the plasma membrane and fusion to the early endosome.

RAB11

A small GTPase that controls the targeting of endocytic cargo to the recycling endosome.

DENTICLE

A specialization of the cuticle of the ventral hypodermis of the Drosophila larva, which has been used as a diagnostic marker of the segmentation of the embryo.

DEEP-ORANGE

(Dor). A component of the homotypic fusion and vacuole protein sorting (HOPS) complex that controls the fusion of multivesicular bodies to lysosomes.

AP2

An adaptor complex that interacts with the cytosolic tail of plasma-membrane receptors and recruits the clathrin coat.

EPS15

An adaptor protein that binds to AP2 when phosphorylated by the EGF receptor and recruits clathrin to the endocytic vesicle coat.

β-ARRESTIN

An adaptor protein that binds to clathrin on interaction with phosphorylated β-adrenergic receptor.

HEPATIC GROWTH FACTOR-REGULATED TYROSINE KINASE SUBSTRATE

(Hrs). A FYVE-domain protein that controls the invagination of the membrane to form multivesicular bodies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Gaitán, M. Signal dispersal and transduction through the endocytic pathway. Nat Rev Mol Cell Biol 4, 213–224 (2003). https://doi.org/10.1038/nrm1053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing