Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adenovirus-5 E1A: paradox and paradigm

Key Points

  • Adenovirus-2/5 E1A proteins have co-transformation activity in rodent cells, but this has not yet been shown in human cell lines.

  • The 243-amino-acid form of adenovirus-5 E1A has tumour-suppressive activity in several human tumour cell lines.

  • This E1A protein — acting chiefly through transcriptional mechanisms — sensitizes tumour cells to anoikis and converts them into an epithelial phenotype.

  • E1A proteins do not bind DNA directly.

  • The function of E1A proteins can be regulated by phosphorylation and acetylation.

  • E1A targets three histone acetyltransferase (HAT)-containing co-activator proteins — p300, CBP (CREB-binding protein) and PCAF (p300/CBP-associated factor) — and inhibits their function

  • This interaction promotes cell-cycle progression in rodent fibroblasts, but the exact mechanism is unclear. This interaction is, however, tumour suppressive in certain human tumour cell lines.

  • E1A also targets the co-repressor protein CtBP, which might be involved in anoikis-sensitization and epithelial conversion.

  • E1A targets components of a chromatin-remodelling complex known as TRRAP (transactivation/transformation-domain-associated protein) and p400, and these interactions might contribute to oncogenic co-transformation of rodent cells.

  • The interaction of E1A with retinoblastoma protein (pRB) might promote cell-cycle progression through displacement of pRB from complexes with E2F and/or BRG1/BRM chromatin-remodelling proteins. It might also promote the acetylation of pRB by p300, which affects MDM2 such that p53 accumulates, and provokes apoptosis.

  • E1A interacts with the Yak1 (yeast)/DYRK (mammalian; dual-specificity Yak1-related kinases) family of kinases, which might be involved in cell differentiation and cell-cycle control.

Abstract

The adenovirus early region 1A (E1A) proteins were described originally as immortalizing oncoproteins that altered transcription in rodent cells. Surprisingly, the 243-amino-acid form of adenovirus-5 E1A was found subsequently to reverse-transform many human tumour cells. Tumour suppression apparently results from the ability of E1A to re-programme transcription in tumour cells, and the molecular basis of this intriguing effect is now beginning to emerge. These discoveries have provided a tool with which to study the regulation of fundamental cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the main E1A proteins and the regions required for selected E1A activities.
Figure 2: Function of CBP/p300 and effect of interaction with E1A.
Figure 3: The primary structure of p300/CBP-associated factor (PCAF).
Figure 4: Function of CtBP and disruption by E1A.
Figure 5: The primary structure of p400.
Figure 6: The primary structure of TRRAP.
Figure 7: E1A disrupts the interaction between retinoblastoma protein and E2F.
Figure 8: E1A increases acetylation of retinoblastoma protein by p300/CBP.

Similar content being viewed by others

References

  1. Flint, J. & Shenk, T. Adenovirus E1A protein paradigm viral transactivator. Annu. Rev. Genet. 23, 141–161 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Houweling, A., van den Elsen, P. J. & van der Eb, A. J. Partial transformation of primary rat cells by the left most 4.5% fragment of adenovirus 5 DNA. Virology 105, 537–550 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Graham, F. L., van der Eb, A. J. & Heijneker, H. L. Size and location of the transforming region in human adenovirus DNA. Nature 251, 687–691 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).The discovery that E1A cooperates with ras to transform primary cells is described here.

    Article  CAS  PubMed  Google Scholar 

  5. Bayley, S. T. & Mymryk, J. S. Adenovirus E1A proteins and transformation. Int. J. Oncol. 5, 425–444 (1994).

    CAS  PubMed  Google Scholar 

  6. Gallimore, P. H. & Turnell, A. S. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20, 7824–7835 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Graham, F. L., Smiley, J., Russel, W. C. & Nairn, R. Characterization of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Byrd, P., Grand, R. & Gallimore, P. Differential transformation of primary human embryo retinal cells by adenovirus E1 regions and combinations of E1A + ras. Oncogene 3, 477–484 (1988).

    Google Scholar 

  9. Gallimore, P., Grand, R. & Byrd, P. Transformation of human embryonic retinoblasts with SV40, adenovirus and ras oncogenes. Anticancer Res. 6, 499–508 (1986).

    CAS  PubMed  Google Scholar 

  10. Frisch, S. M. Antioncogenic effect of adenovirus E1A in human tumor cells. Proc. Natl Acad. Sci. USA 88, 9077–9081 (1991).This paper reports the tumour-suppressive effect of E1A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu, D. H., Scorsone, K. & Hung, M. C. Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogene. Mol. Cell. Biol. 11, 1745–1750 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, L. et al. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl Acad. Sci. USA 89, 7742–7746 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mymryk, J. S., Shire, K. & Bayley, S. T. Induction of apoptosis by adenovirus type 5 E1A in rat cells requires a proliferation block. Oncogene 9, 1187–1193 (1994).

    CAS  PubMed  Google Scholar 

  14. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Frisch, S. M. & Dolter, K. E. Adenovirus E1A-mediated tumor suppression by a c-erbB-2/neu-independent mechanism. Cancer Res. 55, 5551–5555 (1995).

    CAS  PubMed  Google Scholar 

  16. Mymryk, J. S. Tumour suppressive properties of the adenovirus 5 E1A oncogene. Oncogene 13, 1581–1589 (1996).

    CAS  PubMed  Google Scholar 

  17. Deng, J., Xia, W. & Hung, M. C. Adenovirus 5 E1A-mediated tumor suppression associated with E1A-mediated apoptosis in vivo. Oncogene 17, 2167–2175 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Dickopp, A. et al. Transformation-defective adenovirus 5 E1A mutants exhibit antioncogenic properties in human BLM melanoma cells. Cancer Gene Ther. 7, 1043–1050 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hung, M. C., Hortobagyi, G. N. & Ueno, N. T. Development of clinical trial of E1A gene therapy targeting HER-2/neu-overexpressing breast and ovarian cancer. Adv. Exp. Med. Biol. 465, 171–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Birchmeier, W., Hulsken, J. & Behrens, J. Adherens junction proteins in tumor progression. Cancer Surv. 24, 129–140 (1995).

    CAS  PubMed  Google Scholar 

  21. Christofori, G. & Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumor-suppressor gene. Trends Biochem. Sci. 24, 73–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Guilford, P. E-cadherin downregulation in cancer: fuel on the fire? Mol. Med. Today 5, 172–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Gumbiner, B. M. Carcinogenesis: a balance between β-catenin and APC. Curr. Biol. 7, R443–R446 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Jankowski, J., Bruton, R., Shepherd, N. & Sanders, D. Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. J. Clin. Pathol. 50, 289–290 (1997).

    CAS  Google Scholar 

  25. Frisch, S. M. E1A induces the expression of epithelial characteristics. J. Cell Biol. 127, 1085–1096 (1994).This paper reports that E1A induces mesenchymal to epithelial transitions in tumour cells.

    Article  CAS  PubMed  Google Scholar 

  26. Grooteclaes, M. L. & Frisch, S. M. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19, 3823–3828 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Rowe, D. T., Graham, F. L. & Branton, P. E. Intracellular localization of adenovirus type 5 tumor antigens in productively infected cells. Virology 129, 456–468 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Whalen, S. G. et al. Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J. Virol. 71, 3545–3553 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mal, A., Piotrkowski, A. & Harter, M. L. Cyclin-dependent kinases phosphorylate the adenovirus E1A protein, enhancing its ability to bind pRB and disrupt pRB–E2F complexes. J. Virol. 70, 2911–2921 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Whalen, S. G., Marcellus, R. C., Barbeau, D. & Branton, P. E. Importance of the ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein. J. Virol. 70, 5373–5383 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Q., Yao, H., Vo, N. & Goodman, R. H. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl Acad. Sci. USA 97, 14323–14328 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Avvakumov, N., Sahbegovic, M., Zhang, Z., Shuen, M. & Mymryk, J. S. Analysis of DNA binding by the adenovirus 5 E1A oncoprotein. J. Gen. Virol. 83, 517–524 (2002).

    Article  PubMed  Google Scholar 

  33. Boyer, T. G. & Berk, A. J. Functional interaction of adenovirus E1A with holo-TFIID. Genes Dev. 7, 1810–1823 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Hateboer, G. et al. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl Acad. Sci. USA 90, 8489–8493 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geisberg, J. V., Lee, W. S., Berk, A. J. & Ricciardi, R. P. The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proc. Natl Acad. Sci. USA 91, 2488–2492 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song, C. Z., Loewenstein, P. M., Toth, K. & Green, M. Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain. Proc. Natl Acad. Sci. USA 92, 10330–10333 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geisberg, J. V., Chen, J. L. & Ricciardi, R. P. Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex. Mol. Cell. Biol. 15, 6283–6290 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mazzarelli, J. M., Atkins, G. B., Geisberg, J. V. & Ricciardi, R. P. The viral oncoproteins Ad5 E1A, HPV16 E7 and SV40 TAg bind a common region of the TBP-associated factor-110. Oncogene 11, 1859–1864 (1995).

    CAS  PubMed  Google Scholar 

  39. Chatton, B. et al. Transcriptional activation by the adenovirus larger E1A product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1A. Mol. Cell. Biol. 13, 561–570 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, F. & Green, M. R. Promoter targeting by adenovirus E1A through interaction with different cellular DNA-binding domains. Nature 368, 520–525 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Maguire, K. et al. Interactions between adenovirus E1A and members of the AP-1 family of cellular transcription factors. Oncogene 6, 1417–1422 (1991).

    CAS  PubMed  Google Scholar 

  42. Wahlstrom, G. M., Vennstrom, B. & Bolin, M. B. The adenovirus E1A protein is a potent coactivator for thyroid hormone receptors. Mol. Endocrinol. 13, 1119–1129 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Folkers, G. E. & Vandersaag, P. T. Adenovirus E1A functions as a cofactor for retinoic acid receptor β (rar-β) through direct interaction with rar-β. Mol. Cell. Biol. 15, 5868–5878 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turnell, A. S. et al. Regulation of the 26S proteasome by adenovirus E1A. EMBO J. 19, 4759–4773 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sang, N. et al. RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J. Biol. Chem. 276, 27026–27033 (2001).This paper reports that E1A interacts with the protein kinase C docking protein RACK1.

    Article  CAS  PubMed  Google Scholar 

  46. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  47. O'Connor, M. J., Zimmermann, H., Nielsen, S., Bernard, H. U. & Kouzarides, T. Characterization of an E1A–CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J. Virol. 73, 3574–3581 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamamori, Y. et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96, 405–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Ait-Si-Ali, S. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. MacLellan, W. R., Xiao, G., Abdellatif, M. & Schneider, M. D. A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol. Cell. Biol. 20, 8903–8915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Schiltz, R. L. & Nakatani, Y. The PCAF acetylase complex as a potential tumor suppressor. Biochim. Biophys. Acta 1470, M37–M53 (2000).

    CAS  PubMed  Google Scholar 

  54. Reid, J. L., Bannister, A. J., Zegerman, P., Martinez-Balbas, M. A. & Kouzarides, T. E1A directly binds and regulates the PCAF acetyltransferase. EMBO J. 17, 4469–4477 (1998).This paper reports that PCAF interacts directly with E1A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Puri, P. L. et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Sartorelli, V. et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4, 725–734 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Candau, R. et al. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol. Cell Biol. 16, 593–602 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Howe, J. A., Mymryk, J. S., Egan, C., Branton, P. E. & Bayley, S. T. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl Acad. Sci. USA 87, 5883–5887 (1990).Evidence that p300 and retinoblastoma protein control the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, H.-G. et al. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67, 476–488 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, H.-G., Draetta, G. & Moran, E. E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol. Cell. Biol. 11, 4253–4265 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moran, B. & Zerler, B. Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol. Cell. Biol. 8, 1756–1764 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Somasundaram, K. & El-Deiry, W. S. Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene 14, 1047–1057 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Datto, M. B., Hu, P. P., Kowalik, T. F., Yingling, J. & Wang, X. F. The viral oncoprotein E1A blocks transforming growth factor β-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol. Cell. Biol. 17, 2030–2037 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Janknecht, R., Wells, N. J. & Hunter, T. TGF-β-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12, 2114–2119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kolli, S., Buchmann, A. M., Williams, J., Weitzman, S. & Thimmapaya, B. Antisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC. Proc. Natl Acad. Sci. USA 98, 4646–4651 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waltzer, L. & Bienz, M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521–525 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Ait-Si-Ali, S. et al. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 19, 2430–2437 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Faha, B., Harlow, E. & Lees, E. The adenovirus E1A-associated kinase consists of cyclin E–p33Cdk2 and cyclin A-p33Cdk2. J. Virol. 67, 2456–2465 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kitabayashi, I. et al. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14, 3496–3509 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Banerjee, A. C. et al. The adenovirus E1A 289R and 243R proteins inhibit the phosphorylation of p300. Oncogene 9, 1733–1737 (1994).

    CAS  PubMed  Google Scholar 

  75. Gayther, S. A. et al. Mutations truncating the EP300 acetylase in human cancers. Nature Genet. 24, 300–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G. & Livingston, D. M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature Med. 6, 1335–1340 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Frisch, S. M. et al. Adenovirus E1A represses protease gene expression and inhibits metastasis of human tumor cells. Oncogene 5, 75–83 (1990).

    CAS  PubMed  Google Scholar 

  78. Deng, J., Kloosterbooer, F., Xia, W. & Hung, M. C. The NH2-terminal and conserved region 2 domains of adenovirus E1A mediate two distinct mechanisms of tumor suppression. Cancer Res. 62, 346–350 (2002).

    CAS  PubMed  Google Scholar 

  79. Frisch, S. M. The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays 19, 705–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Turner, J. & Crossley, M. The CtBP family: enigmatic and enzymatic transcriptional co-repressors. Bioessays 23, 683–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9, 213–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Schaeper, U. et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved carboxy-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl Acad. Sci. USA 92, 10467–10471 (1995).The interaction of E1A with the co-repressor protein CtBP is first reported here.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meloni, A., Smith, E. & Nevins, J. A mechanism for Rb/p130 -mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl Acad. Sci. USA 96, 9574–9579 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, S. et al. Functional link of BRCA1 and AT gene product in DNA damage response. Nature 406, 210–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).This paper reports that CtBP function is regulated by NADH/NAD levels in the nucleus.

    CAS  PubMed  Google Scholar 

  86. Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Frisch, S. M. & Francis, H. Disruption of epithelial cell–matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Gosalvez, M., Thurman, R. G., Chance, B. & Reinhold, H. S. Indication of hypoxic areas in tumours from in vivo NADH fluorescence. Eur. J. Cancer 8, 267–269 (1972).

    Article  CAS  PubMed  Google Scholar 

  89. Kowaltowski, A., Vercesi, A. & Fiskum, G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ. 7, 903–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Howe, J. A. & Bayley, S. T. Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 186, 15–24 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Barbeau, D., Charbonneau, R., Whalen, S. G., Bayley, S. T. & Branton, P. E. Functional interactions within adenovirus E1A protein complexes. Oncogene 9, 359–373 (1994).

    CAS  PubMed  Google Scholar 

  92. Fuchs, M. et al. The p400 complex is an essential E1A transformation target. Cell 106, 297–307 (2001).Identification of the chromatin-remodelling complex that contains p400 and TRRAP as an E1A target is reported here.

    Article  CAS  PubMed  Google Scholar 

  93. Deleu, L., Shellard, S., Alevizopoulos, K., Amati, B. & Land, H. Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20, 8270–8275 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sudarsanam, P. & Winston, F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 16, 345–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Amati, B., Frank, S. R., Donjerkovic, D. & Taubert, S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim. Biophys. Acta 1471, M135–M145 (2001).

    CAS  PubMed  Google Scholar 

  98. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell Biol. 20, 556–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Herceg, Z. et al. Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nature Genet. 29, 206–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).This is the first report of an interaction between E1A and retinoblastoma protein.

    Article  CAS  PubMed  Google Scholar 

  101. Egan, C., Bayley, S. T. & Branton, P. E. Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4, 383–388 (1989).

    CAS  PubMed  Google Scholar 

  102. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  103. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Classon, M. & Dyson, N. p107 and p130: versatile proteins with interesting pockets. Exp. Cell Res. 264, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Mittnacht, S. et al. Distinct sub-populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO J. 13, 118–127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fattaey, A. R., Harlow, E. & Helin, K. Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol. Cell. Biol. 13, 7267–7277 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ikeda, M.-A. & Nevins, J. R. Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol. Cell. Biol. 13, 7029–7035 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. De Stanchina, E. et al. E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng, L. & Lee, W. H. The retinoblastoma gene: a prototypic and multifunctional tumor suppressor. Exp. Cell Res. 264, 2–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Knudsen, K. E., Fribourg, A. F., Strobeck, M. W., Blanchard, J. M. & Knudsen, E. S. Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J. Biol. Chem. 274, 27632–27641 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Dick, F. A., Sailhamer, E. & Dyson, N. J. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell. Biol. 20, 3715–3727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dahiya, A., Gavin, M. R., Luo, R. X. & Dean, D. C. Role of the LXCXE binding site in Rb function. Mol. Cell. Biol. 20, 6799–6805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, T. T. & Wang, J. Y. Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol. Cell. Biol. 20, 5571–5580 (2001).

    Article  Google Scholar 

  115. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Hsieh, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Lowe, S. W. & Ruley, H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7, 535–545 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Samuelson, A. V. & Lowe, S. W. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc. Natl Acad. Sci. USA 94, 12094–12099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Garrett, S. & Broach, J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. 3, 1336–1348 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Ward, M. P. & Garrett, S. Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol. Cell. Biol. 14, 5619–5627 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tejedor, F. et al. minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287–301 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Souza, G. M., Lu, S. & Kuspa, A. YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development 125, 2291–2302 (1998).

    CAS  PubMed  Google Scholar 

  123. Becker, W. et al. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J. Biol. Chem. 273, 25893–25902 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, E. J., Ahn, Y. S. & Chung, K. C. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J. Biol. Chem. 276, 39819–39824 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Kentrup, H. et al. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J. Biol. Chem. 271, 3488–3495 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, H. & Antonarakis, S. E. Localisation of a human homologue of the Drosophila mnb and rat Dyrk genes to chromosome 21q22. Hum. Genet. 99, 262–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Z., Smith, M. M. & Mymryk, J. S. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol. Biol. Cell 12, 699–710 (2001).This paper shows the interaction between yeast Yak1 or mammalian DYRK proteins with E1A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boyd, J. M. et al. A region in the C-terminus of adenovirus 2/5 E1A protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12, 469–478 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. De Wit, N. J., et al. Differentially expressed genes identified in human melanoma cell lines with different metastatic behaviour using high density oligonucleotide arrays. Melanoma Res. 12, 57–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Kiemer, A., Takeuchi, K. & Quinlan, M. Identification of genes involved in epithelial–mesenchymal transition and tumor progression. Oncogene 20, 6679–6688 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Steegenga, W. T. et al. Adenovirus E1A proteins inhibit activation of transcription by p53. Mol. Cell. Biol. 16, 2101–2109 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Missero, C. et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc. Natl Acad. Sci. USA 92, 5451–5455 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Avantaggiati, M. L. et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Lill, N. L. et al. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Keblusek, P. et al. The adenoviral E1A oncoproteins interfere with the growth-inhibiting effect of the cdk-inhibitor p21CIP1/WAF1. J. Gen. Virol. 80, 381–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Akli, S., Zhan, S., Abdellatif, M. & Schneider, M. D. E1A can provoke G1 exit that is refractory to p21 and independent of activating Cdk2. Circ. Res. 85, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Bulavin, D. V., Tararova, N. D., Aksenov, N. D., Pospelov, V. A. & Pospelova, T. V. Deregulation of p53/p21/Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after γ-irradiation. Oncogene 18, 5611–5619 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Chattopadhyay, D., Ghosh, M. K., Mal, A. & Harter, M. L. Inactivation of p21 by E1A leads to the induction of apoptosis in DNA-damaged cells. J. Virol. 75, 9844–9856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mal, A. et al. p21 and retinoblastoma protein control the absence of DNA replication in terminally differentiated muscle cells. J. Cell Biol. 149, 281–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mal, A. et al. Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFβ-treated cells. Nature 380, 262–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Nomura, H., Sawada, Y. & Ohtaki, S. Interaction of p27 with E1A and its effect on CDK kinase activity. Biochem. Biophys. Res. Commun. 248, 228–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Alevizopoulis, K., Catarin, B., Vlach, J. & Amati, B. A novel function of adenovirus E1A is required to overcome growth arrest by the CDK2 inhibitor p27Kip1. EMBO J. 17, 5987–5997 (1998).

    Article  Google Scholar 

  143. Trentin, J., van Hoosier, G. & Samper, L. The oncogenicity of human adenoviruses in hamsters. Proc. Soc. Exp. Biol. Med. 127, 683–689 (1968).This study was the first to show the oncogenicity of certain human adenoviruses in rodent models.

    Article  CAS  PubMed  Google Scholar 

  144. Graham, F. & van der Eb, A. Transformation of rat cells by DNA of human adenovirus 5. Virology 54, 536–539 (1973).This study showed the ability of the adenovirus early region to transform rat cells.

    Article  CAS  PubMed  Google Scholar 

  145. Whyte, P., Williamson, N. & Harlow, E. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56, 67–75 (1989).

    Article  CAS  PubMed  Google Scholar 

  146. Eckner, R. et al. Molecular cloning and functional analysis of the adenovirus E1A–associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994).This study reported the identification of the transcriptional coactivator protein p300 as an E1A target protein.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues for omitting references in this review due to space limitations. J.S.M. would like to acknowledge insightful discussion with members of his laboratory and with A. S. Turnell and L. Dagnino. J.S.M is supported by a Canadian Institutes of Health Scholarship and work in his laboratory is supported by funds from the Canadian Institutes of Health. S.M.F. is supported by the Army Breast Cancer Research Program and would like to acknowledge significant moral support from J. Folkman.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

cyclin E

mnb

Twist

LocusLink

VEGF

<i>Saccharomyces</i> Genome Database

Gcn5

Yak1

Swiss-Prot

ATF-2

ATM

BRCA1

BRG1

BRM

CBP

Cdk2

c-jun

c-myc

CtIP

E-cadherin

EID-1

granzyme B

HAT

HER2

HIF1

MDM2

MyoD

p19 ARF

p21Cip1/Waf1

p27Kip1

p53

p57Kip2

p107

PCAF

RACK1

SNF2

Sp1

Sug1

SUV39H1

TIP60

TRRAP

YAKA

Glossary

EPITHELIAL–MESENCHYMAL TRANSITION

(EMT). The transformation of an epithelial cell into a mesenchymal cell with migratory and invasive properties.

CREB

Cyclic AMP response-element-binding protein. A transcription factor that functions in glucose homeostasis and growth-factor-dependent cell survival, and has also been implicated in learning and memory.

HISTONE TAILS

The amino-terminal tails of the core histones, which are subject to several protein modifications.

BASIC HELIX–LOOP–HELIX

A transcription-factor motif that is involved in DNA binding and homo- or heterodimerization.

RNA HELICASE A

A core transcription factor that bridges RNA polymerase II with p300.

TFIIB

Core transcription factor IIB.

SMAD

A transforming growth factor (TGF)-β signal transducer that moves from cytoplasm to nucleus and regulates transcription.

EARLY-RESPONSE GENE

A gene, such as c-Jun and c-Fos, that is rapidly activated by growth factors.

SWI2/SNF2 HOMOLOGY REGION

A motif that is originally found in the yeast SWI/SNF chromatin-remodelling complex.

ENDOREDUPLICATION

A process in which DNA replication occurs without mitosis, and results in nuclear polyploidy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisch, S., Mymryk, J. Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3, 441–452 (2002). https://doi.org/10.1038/nrm827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing