Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking class-switch recombination with somatic hypermutation

Key Points

  • The discovery of activation-induced cytidine deaminase (AID) has revealed that there is a molecular link between two apparently different genetic alteration events — class-switch recombination and somatic hypermutation — which take place in the immunoglobulin loci of antigen-stimulated B lymphocytes.

  • These findings led us to propose that the recognition and cleavage steps of the two events may be mediated by a similar or the same molecule.

  • Because AID seems to be an RNA-editing enzyme, these results also suggest that the complexity of mammalian genetic information may be enriched by an interplay between RNA editing and DNA modification.

Abstract

The recent discovery of a molecular link between two apparently different genetic alteration events — class-switch recombination and somatic hypermutation — has led to the idea that the recognition and cleavage of target DNA in these two events might be mediated by similar or identical molecules to those involved in RNA editing. This could mean that the complexity of mammalian genetic information may be enriched by an interplay between RNA editing and DNA modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoglobulin heavy-chain gene organization and its DNA alteration.
Figure 2: Accessibility model of class-switch recombination.
Figure 3: Artificial substrates of class-switch recombination.
Figure 4: Inversions and deletions at class-switch recombination junctions.
Figure 5: Structure of the target DNA in class-switch recombination and somatic hypermutation.
Figure 6: Model for the regulation of class-switch recombination and somatic hypermutation by AID.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. International Human Genome Sequencing Consortium. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Maas, S. & Rich, A. Changing genetic information through RNA editing. Bioessays 22, 790–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Oettinger, M. A. V(D)J recombination: on the cutting edge. Curr. Opin. Cell Biol. 11, 325–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).AID, a member of RNA-editing cytidine deaminase family, is crucial in class-switch recombination and somatic hypermutation. This paper was the first to indicate the possible involvement of RNA editing in the alteration of DNA information.

    Article  CAS  PubMed  Google Scholar 

  6. Muramatsu, M. & Honjo, T. Complex layers of genetic alteration in the generation of antibody diversity. Trends Immunol. 22, 66–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Honjo, T. & Kataoka, T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc. Natl Acad. Sci. USA 75, 2140–2144 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kataoka, T., Kawakami, T., Takahashi, N. & Honjo, T. Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch. Proc. Natl Acad. Sci. USA 77, 919–923 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, M. M. et al. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature 283, 733–739 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Maki, R., Traunecker, A., Sakano, H., Roeder, W. & Tonegawa, S. Exon shuffling generates an immunoglobulin heavy chain gene. Proc. Natl Acad. Sci. USA 77, 2138–2142 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rabbitts, T. H., Forster, A., Dunnick, W. & Bentley, D. L. The role of gene deletion in the immunoglobulin heavy chain switch. Nature 283, 351–356 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Cory, S., Jackson, J. & Adams, J. M. Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression. Nature 285, 450–456 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286, 676–683 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Davis, M. M., Kim, S. K. & Hood, L. E. DNA sequences mediating class switching in α-immunoglobulins. Science 209, 1360–1365 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu, A., Takahashi, N., Yaoita, Y. & Honjo, T. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28, 499–506 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Iwasato, T., Shimizu, A., Honjo, T. & Yamagishi, H. Circular DNA is excised by immunoglobulin class switch recombination. Cell 62, 143–149 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuoka, M., Yoshida, K., Maeda, T., Usuda, S. & Sakano, H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62, 135–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. von Schwedler, U., Jack, H. M. & Wabl, M. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345, 452–456 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Yancopoulos, G. D. et al. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stavnezer, N. J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).

    Article  Google Scholar 

  21. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for Sμ-Sɛ heavy chain class switching. Immunity 5, 319–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manis, J. P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).References 22–24 showed that class-switch recombination depends on non-homologous end joining.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu, H., Zou, Y. R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Bottaro, A., Li, S., Stewart, V. & Alt, F. W. A selective defect in IgG2b switching as a result of targeted mutation of the Iγ2b promoter and exon. EMBO J. 12, 3529–3537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seidl, K. J. et al. An expressed neor cassette provides required functions of the Iγ2b exon for class switching. Int. Immunol. 10, 1683–1692 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Blackwell, T. K. et al. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature 324, 585–589 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Ott, D. E., Alt, F. W. & Marcu, K. B. Immunoglobulin heavy chain switch region recombination within a retroviral vector in murine pre-B cells. EMBO J. 6, 557–584 (1987).

    Article  Google Scholar 

  31. Leung, H. & Maizels, N. Transcriptional regulatory elements stimulate recombination in extrachromosomal substrates carrying immunoglobulin switch-region sequences. Proc. Natl Acad. Sci. USA 89, 4154–4158 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lepse, C. L., Kumar, R. & Ganea, D. Extrachromosomal eukaryotic DNA substrates for switch recombination: analysis of isotype and cell specificity. DNA Cell Biol. 13, 1151–1161 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Daniels, G. A. & Lieber, M. R. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc. Natl Acad. Sci. USA 92, 5625–5629 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kinoshita, K., Tashiro, J., Tomita, S., Lee, C. G. & Honjo, T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9, 849–858 (1998).An artificial substrate reported here showed clear cytokine inducibility. Using this system, S sequences of different isotypes are shown to be equally targeted in the same cell undergoing IgA switching, indicating lack of isotype specificity of S regions.

    Article  CAS  PubMed  Google Scholar 

  35. Christine, R., Siebenkotten, G. & Radbruch, A. Sensitive analysis of recombination activity using integrated cell surface reporter substrates. Cytometry 37, 205–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Stavnezer, J. et al. Switch recombination in a transfected plasmid occurs preferentially in a B cell line that undergoes switch recombination of its chromosomal Ig heavy chain genes. J. Immunol. 163, 2028–2040 (1999).

    CAS  PubMed  Google Scholar 

  37. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).A unique cell line, CH12F3, useful for studying class-switch recombination, was established by subcloning the CH12.LX cell line, a mouse lymphoma line. This cell line has advantage over other B-cell lines in its efficiency and in the cytokine inducibility of class-switch recombination.

    Article  CAS  PubMed  Google Scholar 

  38. Ott, D. E. & Marcu, K. B. Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses. Int. Immunol. 1, 582–591 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Luby, T. M., Schrader, C. E., Stavnezer, J. & Selsing, E. The μ switch region tandem repeats are important, but not required, for antibody class switch recombination. J. Exp. Med. 193, 159–168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).This study, using artificial substrates, showed that non-mammalian S sequences of chicken and frog (but not a G-rich telomere repeat) can be recognized by mouse recombinase. An artificial sequence containing palindromes was recognized, suggesting the recognition of DNA structure, but not of the primary sequence of S sequences, by the class-switch recombinase.

    Article  CAS  PubMed  Google Scholar 

  41. Mussmann, R., Courtet, M., Schwager, J. & Du Pasquier, L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 2610–2619 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kinoshita, K. et al. in Cold Spring Harbor Symposia on Quantitative Biology: Signaling & Gene Expression in the Immune System 217–226 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  44. Lee, C.-G., Kondo, S. & Honjo, T. Frequent but biased class switch recombination in the Sμ flanking regions. Curr. Biol. 8, 227–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Dunnick, W., Hertz, G. Z., Scappino, L. & Gritzmacher, C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21, 365–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Storb, U. et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev. 162, 153–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Jacobs, H. & Bross, L. Towards an understanding of somatic hypermutation. Curr. Opin. Immunol. 13, 208–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Mantovani, L., Wilder, R. L. & Casali, P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J. Immunol. 151, 473–488 (1993).

    CAS  PubMed  Google Scholar 

  49. Sohn, J., Gerstein, R. M., Hsieh, C. L., Lemer, M. & Selsing, E. Somatic hypermutation of an immunoglobulin mu heavy chain transgene. J. Exp. Med. 177, 493–504 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M. & Olsson, C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166, 5051–5057 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).This paper showed the presence of double-stranded DNA breaks during somatic hypermutation in a Burkitt's lymphoma line by the ligation-mediated PCR method. Accumulation of double-stranded breaks in late S/G2 phase was observed, leading to a model in which cleavage is regulated by the cell cycle and repair is then mediated by homologous recombination.

    Article  CAS  PubMed  Google Scholar 

  54. Brenner, S. & Milstein, C. Origin of antibody variation. Nature 211, 242–243 (1966).

    Article  CAS  PubMed  Google Scholar 

  55. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Azuma, T., Motoyama, N., Fields, L. E. & Loh, D. Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5, 121–130 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klotz, E. L., Hackett, J., Jr & Storb, U. Somatic hypermutation of an artificial test substrate within an Ig kappa transgene. J. Immunol. 161, 782–790 (1998).

    CAS  PubMed  Google Scholar 

  62. Storb, U. et al. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J. Exp. Med. 188, 689–698 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolchanov, N. A., Solovyov, V. V. & Rogozin, I. B. Peculiarities of immunoglobulin gene structures as a basis for somatic mutation emergence. FEBS Lett. 214, 87–91 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Goossens, T., Klein, U. & Kuppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA 95, 2463–2468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilson, P. C. et al. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J. Exp. Med. 187, 59–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).A report of double-stranded DNA breaks during somatic hypermutation in mouse splenocytes. There are intriguing data and discussions on the effect of the relative position of the promoter and immunoglobulin enhancer on deletion frequency in the V gene, which is not discussed in this review.

    Article  CAS  PubMed  Google Scholar 

  68. Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes. Evidence for a break-and-repair pathway of somatic hypermutation. Genetics 158, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jacobs, H. et al. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J. Exp. Med. 187, 1735–1743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, N., Kage, K., Matsuda, F., Lefranc, M. P. & Storb, U. B lymphocytes of xeroderma pigmentosum or Cockayne syndrome patients with inherited defects in nucleotide excision repair are fully capable of somatic hypermutation of immunoglobulin genes. J. Exp. Med. 186, 413–419 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cascalho, M., Wong, J., Steinberg, C. & Wabl, M. Mismatch repair co-opted by hypermutation. Science 279, 1207–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Winter, D. B. et al. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl Acad. Sci. USA 95, 6953–6958 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bertocci, B. et al. Probing immunoglobulin gene hypermutation with microsatellites suggests a nonreplicative short patch DNA synthesis process. Immunity 9, 257–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Frey, S. et al. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity 9, 127–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rada, C., Ehrenstein, M. R., Neuberger, M. S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, N., Bozek, G., Lo, J. C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ehrenstein, M. R. & Neuberger, M. S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schrader, C. E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2–MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thompson, C. B. & Neiman, P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Bemark, M. et al. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192, 1509–1514 (2000).Unlike class-switch recombination, somatic hypermutation does not require the catalytic subunit of the DNA-dependent protein kinase (DNA-PK cs ), indicating that different mechanisms of DNA repair might occur between class-switch recombination and somatic hypermutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen, R. C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. DiSanto, J. P., Bonnefoy, J. Y., Gauchat, J. F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Fuleihan, R. et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc. Natl Acad. Sci. USA 90, 2170–2173 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Korthauer, U. et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361, 539–541 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Revy, P., Geissmann, F., Debre, M., Fischer, A. & Durandy, A. Normal CD40-mediated activation of monocytes and dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. Eur. J. Immunol. 28, 3648–3654 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Chester, A., Scott, J., Anant, S. & Navaratnam, N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta 1494, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Daniels, G. A. & Lieber, M. R. RNA–DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tian, M. & Alt, F. W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA 79, 7837–7841 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Q., Khillan, J., Gadue, P. & Nishikura, K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Burns, C. M. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Ma, J., Qian, R., Rausa, F. M. & Colley, K. J. Two naturally occurring α2,6-sialyltransferase forms with a single amino acid change in the catalytic domain differ in their catalytic activity and proteolytic processing. J. Biol. Chem. 272, 672–679 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Casey, J. L. & Gerin, J. L. Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J. Virol. 69, 7593–7600 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bourara, K., Litvak, S. & Araya, A. Generation of G-to-A and C-to-U changes in HIV-1 transcripts by RNA editing. Science 289, 1564–1566 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Volchkov, V. E. et al. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214, 421–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Sharma, P. M., Bowman, M., Madden, S. L., Rauscher, F. J. & Sukumar, S. RNA editing in the Wilms' tumor susceptibility gene, WT1. Genes Dev. 8, 720–731 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Sakakibara, S. Takeda, A. Shimizu, S. Fagarasan, M. Muramatsu, T. Shinohara, K. Ikuta and H. Nagaoka for their critical reading of the manuscript. We also thank T. Nishikawa and R. Yamasaki for their preparation of the manuscript. This investigation is supported by the Center of Excellence Grant from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

RAG-1

RAG-2

IgM

IgD

IgE

AID

CD40

IL-4

CD40L

TGF-β

BCL-6

Pms2

Msh2

Mlh1

HIGM1

HIGM2

APOBEC-1

ACF

Adar2

Adar1

FURTHER INFORMATION

Computer program

Glossary

ENHANCER

A regulatory element of DNA that activates transcription from distant promoters, independent of position and orientation.

S REGION

A functional region of DNA where class-switch recombination occurs, comprising repetitive sequences of palindrome-rich motifs.

CD40

A cell-surface receptor that belongs to the tumour necrosis factor receptor superfamily and is expressed on B lymphocytes, dendritic cells, activated macrophages, monocytes and endothelial cells.

CD40L

CD40L (or CD154) is a ligand of CD40. It belongs to the tumour necrosis factor superfamily and is expressed on activated T lymphocytes, monocytes and natural killer cells.

TRANSFORMING GROWTH FACTOR β (TGF-β)

A cytokine that has pleiotropic functions in the cell. In class-switch recombination, it activates transcription from the Iα promoter, promoting IgA class switching.

PEYER'S PATCH

A small collection of lymphoid cells that appear in the submucosal tissue (lamina propria) of the small intestine, constituting the secondary lymphoid organ of the gut.

SECONDARY STRUCTURE

Atypical structure of DNA formed by intra-strand base-pairing, such as stem–loops.

STAGGERED NICK

A form of DNA double-stranded break that produces 3′- or 5′-protruding ends.

ERROR-PRONE REPAIR

A general term for the repair of various types of DNA lesion at the expense of fidelity.

COMPLEMENTARITY-DETERMINING REGION

(CDR). Segment in the variable region genes of immunoglobulins and T-cell receptors, corresponding to loops of polypeptide chains that shape the complementary surface to the contour of antigens.

TERMINAL DEOXYRIBONUCLEOTIDE TRANSFERASE

(TdT). An enzyme that adds non-templated nucleotides to a 3′-hydroxyl end of DNA.

LIPOPOLYSACCHARIDE

(LPS). A component of the outer wall of Gram-negative bacteria, consisting of a sugar chain and lipid adducts.

CHYLOMICRON

A lipoprotein involved in transfer of the lipids absorbed in the small intestine.

APOBEC-1 COMPLEMENTATION FACTOR (ACF)

An RNA binding subunit of an apolipoprotein B mRNA editing complex (editosome) that is required for conversion of mRNAs for the low-density lipoprotein component, ApoB100, to those for the chylomicron component, ApoB48.

DNA HELICASE

An enzyme that unwinds duplex DNA during replication, transcription, repair and recombination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, K., Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat Rev Mol Cell Biol 2, 493–503 (2001). https://doi.org/10.1038/35080033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35080033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing