Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Living dangerously: how Helicobacter pylori survives in the human stomach

Key Points

  • Helicobacter pylori is a human-specific pathogen that resides in the stomach. To adapt, survive and proliferate in such environment, this bacterium has elaborated a unique set of virulence factors. The study of their mode of action is unravelling novel aspects of bacterial physiology and, at the same time, of our own physiology, and of the inflammatory and immune response.

  • The continuing research has highlighted the role of the following molecules: a powerful urease; flagellar proteins; a H-gated urea transporter; several adhesins; a vacuolating toxin that causes several specific cellular alterations that seem to be functional for the survival of the bacterium; and bacterial factors that activate inflammatory cells either directly or indirectly through inducing the tissue cells to release pro-inflammatory cytokines.

  • Research is being done to develop vaccines based on studies of modified or unmodified virulence factors. The hope is to be able to prevent or eradicate infection.

Abstract

Helicobacter pylori was already present in the stomach of primitive humans as they left Africa and spread through the world. Today, it still chronically infects more than 50% of the human population, causing, in some cases, severe diseases such as peptic ulcers and stomach cancer. To succeed in these long-term associations, H. pylori has developed a unique set of virulence factors, which allow survival in a unique and hostile ecological niche — the human stomach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the stomach mucosa colonized by Helicobacter pylori, showing the main virulence factors involved in colonization and disease.
Figure 2: Helicobacter pylori.
Figure 3: Scheme of the intracellular events involved in the HP-NAP activation of human leukocytes.
Figure 4: Current model of the cellular alterations induced by VacA cytotoxin.
Figure 5: The secretion system of Helicobacter pylori injects bacterial proteins into the cytosol of host cells.

Similar content being viewed by others

References

  1. Warren, J. R. & Marshall, B. J. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275 (1983).The beginning of a Copernican revolution in gastroenterology, which has led to a complete change of perspective and therapeutic approach with a tremendous improvement of human health.

    CAS  PubMed  Google Scholar 

  2. Achtman, M. & Suerbaum, S. (eds) Helicobacter pylori: Molecular and Cellular Biology (Horizon Scientific, Norfolk, 2001).The most updated multi-author book covering the molecular and tissue mechanisms of action of H. pylori virulence factors.

    Google Scholar 

  3. Parsonnet, J. The incidence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 9, suppl. 2, 45–51 (1995).

    PubMed  Google Scholar 

  4. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Donati, M. De Medica Historia Mirabili (Mantua, 1586).

    Google Scholar 

  6. Go, M. F. What are the host factors that place an individual at risk for Helicobacter pylori-associated disease? Gastroenterol. 113, S15–S20 (1997).

    Article  CAS  Google Scholar 

  7. Marshall, B. J. & Langton, S. R. Urea hydrolysis in patients with Campylobacter pyloridis infection. Lancet 26, 965–966 (1986).

    Article  Google Scholar 

  8. Hu, L. -T. & Mobley, H. L. T. Purification and N-terminal analysis of urease from Helicobacter pylori. Infect. Immun. 58, 992–998 (1990).

    CAS  PubMed  Google Scholar 

  9. Labigne, A., Cussac, V. & Courcoux, P. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J. Bacteriol. 173, 1920–1931 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. The crystal structure of urease from Klebsiella aerogenes. Science 268, 998–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bauerfeind, P., Garner, R., Dunn, B. E. & Mobley, H. L. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 40, 25–30 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485 (2000).A remarkable paper on how this bacterium handles the vital urea molecule.

    Article  CAS  PubMed  Google Scholar 

  13. Phadnis, S. H. et al. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64, 905–912 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunn, B. E. et al. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect. Immun. 65, 1181–1188 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eaton, K. A., Brooks, C. L., Morgan, D. R. & Krakowka, S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59, 2470–2475 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Clyne, M., Labigne, A. & Drumm, B. Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect. Immun. 63, 1669–1673 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Megraud, F., Neman-Simha, V. & Brugman, D. Further evidence of the toxic effect of ammonia produced by Helicobacter pylori urease on human epithelial cells. Infect. Immun. 60, 1858–1863 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki, M. et al. Helicobacter pylori-associated ammonia production enhances neutrophil-dependent gastric mucosal cell injury. Am. J. Physiol. 263, G719–G725 (1992).

    CAS  PubMed  Google Scholar 

  19. Sommi, P. et al. Significance of ammonia in the genesis of gastric epithelial lesions induced by Helicobacter pylori: an in vitro study with different bacterial strains and urea concentrations. Digestion 57, 299–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Williams, C. L., Preston, T., Hossack, M., Slater, C. & McColl, K. E. Helicobacter pylori utilizes urea for amino acid synthesis. FEMS Immunol. Med. Microbiol. 13, 87–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Harris, P. R., Mobley, H. L., Perez-Perez, G. I., Blaser, M. J. & Smith, P. D. Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterol. 111, 419–425 (1996).

    Article  CAS  Google Scholar 

  22. Ferrero, R. L., Thiberge, J. -M., Huerre, M. & Labigne, A. Recombinant antigens prepared from the urease subunits of Helicobacter pylori spp: evidence of protection in a mouse model of gastric infection. Infect. Immun. 62, 4981–4989 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Giudice, G., Covacci, A., Telford, J. L. Montecucco, C. & Rappuoli, R. The design of vaccines against Helicobacter pylori and their development. Annu. Rev. Immunol. 19, 523–563 (2001).A thorough and updated analysis of the current status of the effort to produce an anti H. pylori vaccine.

    Article  CAS  PubMed  Google Scholar 

  24. Josenhans, C. & Suerbaum, S. in Helicobacter pylori : Molecular and Cellular Biology (eds Achtman, M. & Suerbaum, S) 171–184 (Horizon Scientific, Norfolk, UK, 2001).

    Google Scholar 

  25. Yoshiyama, H., Nakamura, H., Kimoto, M., Okita, K. & Nakazawa, T. Chemotaxis and motility of Helicobacter pylori in a viscous environment. J. Gastroenterol. 34, suppl. 11, 18–23 (1999).

    PubMed  Google Scholar 

  26. Slomiany, B. L. & Slomiany, A. Role of mucus in gastric mucosal protection. J. Physiol. Pharmacol. 42, 147–161 (1991).

    CAS  PubMed  Google Scholar 

  27. Lichtenberger, L. M. The hydrophobic barrier properties of gastrointestinal mucus. Annu. Rev. Physiol. 57, 565–583 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Bhaskar, K. R. et al. Viscous fingering of HCl through gastric mucin. Nature 360, 458–461 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Slomiany, B. L., Murty, V. L., Piotrowski, J. & Slomiany, A. Gastroprotective agents in mucosal defense against Helicobacter pylori. Gen. Pharmacol. 25, 833–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Boren, T., Falk, P., Roth, L. A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Evans, D. G., Karjalainen, T. K., Evans, D. J., Graham, D. Y. & Lee, C. -H. Cloning, nucleotide sequence, and expression of a gene encoding an adhesion subunit protein of Helicobacter pylori. J. Bacteriol. 175, 674–683 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones, A. C. et al. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesin for AGFS cells. J. Bacteriol. 179, 5643–5647 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).Although H. pylori is the most recent bacterial pathogen discovered, its genome was one of the first to be sequenced. The genome sequence provides a fundamental step in the understanding of H. pylori.

    Article  CAS  PubMed  Google Scholar 

  35. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Valkonen, K., Wadstrom, T. & Moran, A. P. Identification of the N-acetylneuraminyllactose-specific laminin binding protein. Infect. Immun. 65, 916–923 (1993).

    Google Scholar 

  37. Lingwood, C. A. et al. Receptor affinity purification of a lipid-binding adhesin from Helicobacter pylori. Infect. Immun. 61, 2474–2478 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Namavar, F., Sparrius, M., Veerman, E. C. I., Appelmelk, B. J. & Van Vandenbroucke-Grauls, C. M. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulphated carbohydrates on high-molecular weight salivary mucin. Infect. Immun. 66, 444–447 (1997).

    Google Scholar 

  39. Odenbreit, S. et al. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 31, 1537–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Edwards, N. J. et al. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 35, 1530–1539 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Smoot, D. T. et al. Adherence of Helicobacter pylori to cultured human gastric epithelial cells. Infect. Immun. 61, 350–355 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Segal, E. D., Falkow, S. & Tompkins, L. S. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl Acad. Sci. USA 93, 1259–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marshall, B. J., Armstrong, J. A., McGeche, D. B. & Glancy, R. J. Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med. J. Austr. 142, 436–439 (1985).A classic of medical microbiology.

    CAS  Google Scholar 

  44. Fiocca, R. et al. Epithelial cytotoxicity, immune responses, and inflammatory components of Helicobacter pylori gastritis. Scand. J. Gastroenterol. 205, 11–21 (1994).

    Article  CAS  Google Scholar 

  45. Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of gastritits. The updated Sidney System. Am. J. Surg. Pathol. 20, 1161–1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Yoshida, N. et al. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 105, 1431–1440 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, D. J. Jr et al. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun. 63, 2213–2220 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Satin, B. et al. The neutrophil activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor J. Exp. Med. 191, 1467–1476 (2000).An accurate characterization of the mode of activation and chemotaxis induced by HP-NAP, including the first demonstration that HP-NAP is a major antigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montemurro, P. et al. HP-NAP of Helicobacter pylori alters the coagulation-fibrinolysis balance of human blood mononuclear cells by stimulating the expression of Tissue Factor and PAI-2. J. Infect. Dis. 183, 1055–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Crabtree, J. E. et al. Induction of interleukin-8 secretion from gastric epithelial cells by cagA negative isogenic mutant of Helicobacter pylori. J. Clin. Pathol. 48, 967–969 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shimoyama, T., Everett, S. M., Dixon, M. F., Axon, A. T. R. & Crabtree, J. E. Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori positivity and severity of gastritis. J. Clin. Pathol. 51, 765–770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992).The original description of the VacA toxin.

    CAS  PubMed  Google Scholar 

  53. Salama, N., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001).An almost textbook example of insightful study of bacterial ecology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McClain, M. S., Cao, P. & Cover, T. L. Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization. Infect. Immun. 69, 1181–1184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Telford, J. L. et al. Gene structure of Helicobacter pylori cytotoxin and evidence of a key role in gastric disease. J. Exp. Med. 179, 1653–1658 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific VacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771–17777 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Pagliaccia, C. et al. The m2 form of the Helicobacter pylori cytotoxin has cell-type-specific vacuolating activity. Proc. Natl Acad. Sci. USA 95, 10212–10217 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McClain, M. S., Schraw, W., Ricci, V., Boquet, P. & Cover, T. L. Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol. Microbiol. 37, 433–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Szabo, I. et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 18, 5517–5527 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tombola, F. et al. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers. Biophys. J. 76, 1401–1409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G. & Shao, Z. VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Lupetti, P. et al. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell. Biol. 133, 801–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. de Bernard, M. et al. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem. 270, 23937–23940 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Yahiro, K. et al. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J. Biol. Chem. 274, 36693–36699 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Cover, T. L., Hanson, P. I. &. Heuser, J. E. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating toxin, reveals its pattern of assembly. J. Cell Biol. 138, 759–769 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eaton, S. & Simons, K. Apical, basal, and lateral cues for epithelial polarization. Cell 82, 5–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Papini, E. et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest. 102, 813–820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pelicic, V. et al. Helicobacter pylori VacA cytotoxin associated with bacteria increases epithelial permeability independently of its vacuolating activity. Microbiology 145, 2043–2050 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. de Bernard, M., Moschioni, M., Napolitani, C., Rappuoli, R. & Montecucco, C. The VacA toxin of Helicobacter pylori identifies a new intermediate filament interacting protein. EMBO J. 19, 48–56 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hotchin, N. A., Cover, T. L. & Akhtar, N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase. J. Biol. Chem. 275, 14009–14012 (1999).

    Article  Google Scholar 

  71. Ricci, V. et al. Helicobacter pylori vacuolating toxin accumulates within the endosomal-vacuolar compartment of cultured gastric cells and potentiates the vacuolating activity of ammonia. J. Pathol. 183, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Molinari, M. et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 272, 25339–25344 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Papini, E. et al. The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. J. Med. Microbiol. 44, 1–6 (1996).

    Article  Google Scholar 

  74. Papini, E. et al. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J. 16, 15–24 (1997).The demonstration that VacA induced cell vacuolization is a specific process requiring the enzymic activity of a specific Rab protein involved in the control of membrane transport at the late endosomal level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gunther, W., Luchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl Acad. Sci. USA 95, 8075–8080 (1998).Identification of ClC-5 as the Cl channel isoform that limits the rate of endosomal acidification by providing the counter-anion necessary for electric balance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tombola, F. et al. Inhibition of the vacuolating and anion activities of the VacA toxin of Helicobacter pylori. FEBS Lett. 460, 221–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. De Bernard, M. et al. Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol. Microbiol. 26, 665–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Ye, D., Willhite, D. C. & Blanke, S. R. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. J. Biol. Chem. 274, 9277–9282 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Galmiche, A. et al. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Molinari, M. et al. Selective inhibition of Li-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187, 135–140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. D'Elios, M. M. et al. Th1 effector specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J. Immunol. 158, 962–967.

  82. Shirai, M., Arichi, T., Nakazawa, T. & Berzofsky, J. A. Persistent infection by Helicobacter pylori down-modulates virus-specific CD8+ cytotoxic T cell response and prolongs viral infection. J. Infect. Dis. 177, 72–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Satin, B. et al. Vacuolating toxin of Helicobacter pylori inhibits maturation of procathepsin D and degradation of epidermal growth factor in HeLa cells through a partial neutralization of acidic intracellular compartments. J. Biol. Chem. 272, 25022–25028 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Censini, S. et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).The demonstration that virulent H. pylori contain a 40-kb foreign DNA (called pathogenicity island or PAI) coding for a type IV secretion system represented a milestone in the understanding of H. pylori pathogenesis and provided an explanation for the presence of the cagA gene only in a subset of strains. Also see reference 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Ogura, K. et al. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med. 192, 1601–1610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Perez-Perez, G. I. et al. The role of CagA status in gastric and extragastric complications of Helicobacter pylori. J. Physiol. Pharmacol. 50, 833–885 (1999).

    CAS  PubMed  Google Scholar 

  88. Parsonnet, J. et al. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori strains. Gut 40, 297–301 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Webb, P. M., Crabtree, J. E. & Forman, D. Gastric cancer, cytotoxin-associated gene A-positive Helicobacter pylori and serum pepsinogens: an international study, the Eurogast Study Group. Gastroenterology 116, 269–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Christie, P. J. & Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asahi, M. et al. Helicobacter pylori CagA protein delivered into the gastric epithelial cells can be tyrosine phosphorylated. J. Exp. Med. 191, 593–602 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96, 14559–14564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stein, M., Rappuoli, R. & Covacci, A. Tyrosine phosphorylation of Helicobacter pylori CagA after cag-driven host translocation. Proc. Natl Acad. Sci. USA 97, 1263–1268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Odenbrait, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).References 91 94 each independently reported this unique and novel finding in bacterial pathogenesis. A bacterial protein (CagA) is introduced by a specialized secretion system (type IV secretion) into the host cell, which tyrosine phosphorylates the bacterial protein and initiates a cascade of events, which ultimately led to tissue damage and decrease.

    Article  Google Scholar 

  95. Covacci, A. et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA 90, 5791–5795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Naumann, M. et al. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J. Biol. Chem. 274, 31655–31662 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Pomorski, T., Meyer, T. F. & Naumann, M. Helicobacter pylori-induced prostaglandin E2 synthesis involves activation of phospholipase A2 in epithelial cells. J. Biol. Chem. 276, 804–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Covacci, A. & Rappuoli, R. Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cells. J. Exp. Med. 191, 587–592 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rappuoli, R. et al. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today 20, 493–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Ermark, T. H. et al. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II–restricted responses. J. Exp. Med. 188, 2277–2288 (1998).

    Article  Google Scholar 

  101. Solnick, J. V. & Schauer, D. B. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 14, 59–97 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of the many relevant papers that we could not quote owing to space limitations. We thank A. Covacci, M. de Bernard, G. Del Giudice, W. Dundon, E. Papini, J. L. Telford and M. Zoratti for many discussions and for critical reading of the manuscript, and to G. Corsi for the artwork. Work carried out in the authors' laboratories was supported by European Community grants, by the CNR–MURST 5% Project, by MURST 40% Projects on Inflammation and by the Armenise–Harvard Medical School Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

urease

HP-NAP

IL-8

GRO

epithelial-derived neutrophil-activating protein 78

RANTES

metaphase chromosome protein 1

Rab7

cytochrome c

cagA

NF-κB

AP1

phospholipase A2

mitogen-activated protein kinase

p21-activated kinase

MHC class I

FURTHER INFORMATION

The complete sequences of two strains of H. pylori (J99 and 26695)

A yeast two-hybrid protein–protein interaction map

Glossary

GRAM-NEGATIVE BACTERIA

Bacteria whose cell walls do not retain a basic blue dye during the Gram-stain procedure. These cell walls are thin, consisting of a layer of lipopolysaccharide outside a peptidoglycan layer.

ADENOCARCINOMA

Cancer originating from uncontrolled proliferation of epithelial cells of the ducts and acini of glandular organs.

LYMPHOMA

Cancer originating from uncontrolled proliferation of lymphocytes.

MUCUS

Slimy substance secreted by mucous cells of the mucosae that consists predominantly of mucins — highly glycosylated proteins of high molecular weight. The function of mucus is to protect the linings of body cavities.

LEWIS ANTIGEN

A system of soluble antigens in secretions and plasma that represents one of the serologically distinguishable human blood-group substances. Lewis specificities are carried on glycosphingolipids and glycoproteins.

PERIPLASM

Space between the outer and the inner membranes of Gram-negative bacteria.

NEUTROPHIL

A phagocytic cell of the myeloid lineage that has an important role in the inflammatory response, undergoing chemotaxis towards sites of infection or wounding.

MYELOPEROXIDASE

Peroxidase from neutrophils that takes part in the bactericidal activity of these cells. The name originates from the first isolation from the blood of patients with myeloid leukaemia.

MONOCYTE

Large leukocytes with a horseshoe-shaped nucleus. They derive from pluripotent stem cells and become phagocytic macrophages when they enter the tissues.

PROINFLAMMATORY CYTOKINES

Secreted proteins with autocrine or paracrine action that regulate the inflammatory response. There are many types of cytokine, which elicit different cellular responses including control of cell proliferation and differentiation, regulation of immune responses and haematopoiesis.

EPITHELIAL CELLS

Polarized cells that cover the outer surfaces of the body and line internal cavities or tubes (except blood vessels).

OXYNTIC CELLS

Cells of the gastric mucosa that secrete hydrochloric acid.

PERISTALSIS

A wave-like sequence of contraction and relaxation that passes along a tube-like structure, resulting in a net forward movement of the content.

LECTIN

Agglutinins and other antibody-like proteins of nonimmune origin that bind sugars.

ENDOTHELIAL CELLS

Flattened cells that grow in a single layer and line blood vessels.

LPS

(Lipopolysaccharide.) Components of the outer membrane of Gram-negative bacteria that are made of a lipid, a core oligosaccharide and an O-linked sugar side chain.

CHEMOKINE

A type of chemotactic cytokine that acts primarily on haematopoietic cells in acute and inflammatory processes.

FIBRINOLYSIS

The proteolysis of fibrin by plasmin in blood clots.

TISSUE FACTOR

A transmembrane glycoprotein that initiates blood coagulation.

TRANS-EPITHELIAL RESISTANCE

Electric resistance across epithelial sheets, measured across the apical–basolateral axis of the cell.

TIGHT JUNCTION

A belt-like region of adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing within the plane of the membrane.

APICAL SURFACE

Surface of an epithelial or endothelial cell that faces the lumen of a cavity or tube, or the outside of the organism.

ANTIGEN-PRESENTING CELLS

Cells specialized in the generation of epitopes that are presented through major histocompatibility complex II (MHC II) to T lymphocytes.

CD4+ T CELLS

T helper cells, which collaborate with antigen-presenting cells in the initiation of an immune response.

CD8+ CYTOTOXIC TCELLS

T cytotoxic cells, which are directly responsible for killing cells that present peptides through MHC I.

TRANSPOSABLE ELEMENTS

Also called transposons. Specific DNA sequences that are transferred as a unit from one replicated DNA sequence to another.

HORIZONTAL TRANSFER

Transfer of DNA sequences from one bacterium to another.

COMMENSAL

Either of two species that live in close association with benefit to one partner but with little or no effect on the other partner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montecucco, C., Rappuoli, R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2, 457–466 (2001). https://doi.org/10.1038/35073084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing