Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Confounded cytosine! Tinkering and the evolution of DNA

Abstract

Early in the history of DNA, thymine replaced uracil, thus solving a short-term problem for storing genetic information — mutation of cytosine to uracil through deamination. Any engineer would have replaced cytosine, but evolution is a tinkerer not an engineer. By keeping cytosine and replacing uracil the problem was never eliminated, returning once again with the advent of DNA methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise evolution of DNA on the basis of what is inferred from modern biochemical pathways.
Figure 2: DNA structure and the chemistry of cytosine deamination.
Figure 3: Base-excision repair pathways.
Figure 4: 'Leaky' mismatch-specific uracil-DNA glycosylase as a driving force for evolution of U→T replacement in DNA.
Figure 5: De novo and salvage pathways of pyrimidine deoxyribonucleotide metabolism.

Similar content being viewed by others

References

  1. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  2. Poole, A., Penny, D. & Sjöberg, B. -M. Methyl-RNA: an evolutionary bridge between RNA and DNA? Chem. Biol. 7, R207–R216 (2000).

    Article  CAS  Google Scholar 

  3. Hitzeman, R. A. & Price, A. R. Relationship of Bacillus subtilis DNA polymerase III to bacteriophage PBS2-induced DNA polymerase and to the replication of uracil-containing DNA. J. Virol. 28, 697–709 (1978).

    CAS  Google Scholar 

  4. Lazcano, A., Guerrero, R., Margulis, L. & Oró, J. The evolutionary transition from RNA to DNA in early cells. J. Mol. Evol. 27, 283–290 (1988).

    Article  CAS  Google Scholar 

  5. Sutherland, J. D. & Whitfield, J. N. Prebiotic chemistry: a bioorganic perspective. Tetrahedron 53, 11493–11527 (1997).

    Article  CAS  Google Scholar 

  6. Frederico, L. A., Kunkel, T. A. & Ramsay Shaw, B. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29, 2532–2537 (1990).

    Article  CAS  Google Scholar 

  7. Frederico, L. A., Kunkel, T. A. & Ramsay Shaw, B. Cytosine deamination in mismatched base pairs. Biochemistry 32, 6523–6530 (1993).

    Article  CAS  Google Scholar 

  8. Dianov, G. & Lindahl, T. Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4, 1069–1076 (1994).

    Article  CAS  Google Scholar 

  9. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  Google Scholar 

  10. Mosbaugh, D. W. & Bennett, S. E. Uracil-excision DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 48, 315–370 (1994).

    Article  CAS  Google Scholar 

  11. Krokan, H. E., Standal, R. & Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16 (1997).

    Article  CAS  Google Scholar 

  12. Cunningham, R. P. DNA glycosylases. Mutat. Res. 383, 189–196 (1997).

    Article  CAS  Google Scholar 

  13. Kornberg, A. & Baker, T. A. DNA Replication 2nd edn Ch. 2 (W. H. Freeman, New York, 1992).

    Google Scholar 

  14. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  Google Scholar 

  15. Jones, P. A. The DNA methylation paradox. Trends Genet. 15, 34–37 (1999).

    Article  CAS  Google Scholar 

  16. Barrett, T. E. et al. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 92, 117–129 (1998).

    Article  CAS  Google Scholar 

  17. Gallinari, P. & Jiricny, J. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383, 735–738 (1996).

    Article  CAS  Google Scholar 

  18. Barrett, T. E. et al. Crystal structure of a thwarted mismatch glycosylase DNA repair complex. EMBO J. 18, 6599–6609 (1999).

    Article  CAS  Google Scholar 

  19. Panayotou, G., Brown, T., Barlow, T., Pearl, L. H. & Savva, R. Direct measurement of the substrate preference of uracil-DNA glycosylase. J. Biol. Chem. 273, 45–50 (1998).

    Article  CAS  Google Scholar 

  20. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  21. Lutsenko, E. & Bhagwat, A. S. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat. Res. 437, 11–20 (1999).

    Article  CAS  Google Scholar 

  22. Lutsenko, E. & Bhagwat A. S. The role of the Escherichia coli MUG protein in the removal of uracil and 3,N4-Ethenocytosine from DNA. J. Biol. Chem. 274, 31034–31038 (1999).

    Article  CAS  Google Scholar 

  23. Maniloff, J. & Ackermann, H.-W. Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol. 143, 2051–2063 (1998).

    Article  CAS  Google Scholar 

  24. Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    Article  CAS  Google Scholar 

  25. Hendrich, B., Hardeland, U., Ng, H. -H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401, 301–304 (1999).

    Article  CAS  Google Scholar 

  26. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  Google Scholar 

  27. O'Neill, R. J. W., O'Neill, M. J. & Graves, J. A. M. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

    Article  CAS  Google Scholar 

  28. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998).

    Article  CAS  Google Scholar 

  29. Garrick, D., Fiering, S., Martin, D. I. K. & Whitelaw, E. Repeat induced gene silencing in mammals. Nature Genet. 18, 56–59 (1998).

    Article  CAS  Google Scholar 

  30. Regev, A., Lamb, M. J. & Jablonka, E. The role of DNA methylation in invertebrates: developmental regulation or genome defence? Mol. Biol. Evol. 15, 880–891 (1998).

    Article  CAS  Google Scholar 

  31. Simmen, M. W. et al. Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283, 1164–1167 (1999).

    Article  CAS  Google Scholar 

  32. Lieb, M. & Bhagwat, A. S. Very short patch repair: reducing the cost of cytosine methylation. Mol. Microbiol. 20, 467–473 (1996).

    Article  CAS  Google Scholar 

  33. Tsutakawa, S. E., Jingami, H. & Morikawa, K. Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell 99, 615–623 (1999).

    Article  CAS  Google Scholar 

  34. Adams, M. A. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  35. Tweedie, S. et al. Vestiges of a DNA methylation system in Drosophila melanogaster? Nature Genet. 23, 389–390 (1999).

    Article  CAS  Google Scholar 

  36. Shapiro, R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401 (1999).

    Article  CAS  Google Scholar 

  37. Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  38. El-Hajj, H. H., Wang, L. & Weiss, B. Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth. J. Bacteriol. 174, 4450–4456 (1992).

    Article  CAS  Google Scholar 

  39. Garcia, G. A. & Goodenough-Lashua, D. M. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 135–168 (ASM, Washington DC, 1998).

    Book  Google Scholar 

  40. El-Hajj, H. H., Zhang, H. & Weiss, B. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J. Bacteriol. 170, 1069–1075 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Natural Science Research Council (to B.M.S) and by the New Zealand Marsden Fund.

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Codon usage in molecular evolution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, A., Penny, D. & Sjöberg, BM. Confounded cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol 2, 147–151 (2001). https://doi.org/10.1038/35052091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing