Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein interaction maps for model organisms

Abstract

Until recently, classical genetics and biochemistry were the main techniques used to investigate how organisms develop, reproduce, behave and age. But with the availability of complete genome sequences new approaches are emerging. Complete sets of proteins — 'proteomes' — can be predicted from genome sequences and used to characterize protein functions globally. For example, through the large-scale identification of physical protein–protein interactions, comprehensive protein interaction maps are being generated. And these maps might help us to understand the processes that control the biology of living organisms.

Key Points

  • The availability of complete genome sequences for some organisms allows the prediction of complete sets of proteins — proteomes.

  • To characterize protein function on a genome-wide scale, functional genomic approaches are now being taken. These are usually based on conventional assays modified to allow high-throughput or automated settings in which many proteins can be analysed simultaneously.

  • One functional genomic approach consists of the systematic identification of physical protein–protein interactions for a given proteome, with the aim of generating comprehensive protein interaction maps.

  • In classical proteomic approaches, the starting material is a protein extract from the organism. Such approaches are often limited by their inability to identify specific interactions within a complex of interacting proteins. This limitation can potentially be overcome by reverse proteomic approaches.

  • In reverse proteomic approaches, which can be computer-based or experimental, experiments are designed using the predicted proteome.

  • Computer-based approaches can use three assumptions:

  • Proteins encoded by pairs of separate genes functionally interact if their orthologues (proteins that have similar functions in different organisms) are known to be part of a single protein in another organism.

  • There is strong selective pressure for functionally interacting proteins to be inherited together during speciation.

  • Proteins that physically interact in one organism will co-evolve so that their respective orthologues maintain the ability to interact in another organism.

  • The yeast two-hybrid approach allows yeast cells expressing an interacting protein pair (X and Y) to be selected by using fusion tags attached to X and Y that reconstitute a transcription factor upon an interaction between X and Y, leading to the activation of reporter gene expression. This approach can be used to systematically test many possible interacting pairs.

  • Potential interactions can be confirmed by co-purifying or co-immunoprecipitating the partner proteins, examining loss-of-function phenotypes of the genes that encode interaction partners, or examining the effect of a loss of a protein interaction in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein interactions are crucial in many aspects of biological function.
Figure 2: Two directions for proteomics in protein interaction mapping.
Figure 3: Genetic and physical interactions overlap in the LET-60/Ras pathway involved in vulval development in Caenorhabditis elegans.
Figure 4: Clustering analysis of interactions involving synthetic multivulva proteins in Caenorhabditis elegans suggests the existence of a multiprotein complex.

Similar content being viewed by others

References

  1. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K12 . Science 277, 1453–1474 (1997).

    Article  CAS  Google Scholar 

  2. Goffeau, A. et al. The yeast genome directory. Nature 387, S1–S105 (1997).

    Google Scholar 

  3. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology . Science 282, 2012–2018 (1998).

  4. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 ( 2000).

    Article  Google Scholar 

  5. Pennisi, E. Finally, the book of life and instructions for navigating it. Science 288, 2304–2307 ( 2000).

    Article  CAS  Google Scholar 

  6. Ewing, B. & Green, P. Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet. 25, 232–234 (2000).

    Article  CAS  Google Scholar 

  7. Roest-Crollius, H. et al. Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nature Genet. 25, 235–238 ( 2000).

    Article  CAS  Google Scholar 

  8. Liang, F. et al. Gene index analysis of the human genome estimates approximately 120,000 genes. Nature Genet. 25, 239– 240 (2000).

    Article  CAS  Google Scholar 

  9. Chervitz, S. A. et al. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022 –2027 (1998).

    Article  CAS  Google Scholar 

  10. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).References 9 and 10 are an excellent source for comparative genomics in worms, yeast and flies.

    Article  CAS  Google Scholar 

  11. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray . Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  12. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675– 1680 (1996). [PubMed]

    Article  CAS  Google Scholar 

  13. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 ( 1996).

    Article  CAS  Google Scholar 

  14. White, K. P., Rifkin, S. A., Hurban, P. & Hogness, D. S. Microarray analysis of Drosophila development during metamorphosis . Science 286, 2179–2184 (1999).

    Article  CAS  Google Scholar 

  15. Reinke, V. et al. A global profile of germline gene expression in C. elegans . Mol. Cell 6, 605– 616 (2000).

    Article  CAS  Google Scholar 

  16. Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. Genomic analysis of gene expression in C. elegans. Science 290, 809– 812 (2000).

    Article  CAS  Google Scholar 

  17. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 , 901–906 (1999).

    Article  CAS  Google Scholar 

  18. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413– 418 (1999).

    Article  CAS  Google Scholar 

  19. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  20. Fraser, A. G. et al. Functional genomics analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  Google Scholar 

  21. Gonczy, P. et al. Functional genomics analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  CAS  Google Scholar 

  22. Lynch, A. S., Briggs, D. & Hope, I. A. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genet. 11, 309–313 ( 1995).

    Article  CAS  Google Scholar 

  23. Ding, D. Q. et al. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion domain DNA library . Genes Cells 5, 169–190 (2000).

    Article  CAS  Google Scholar 

  24. Jansen, G. et al. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nature Genet. 21, 414– 419 (1999).

    Article  CAS  Google Scholar 

  25. Bartel, P. L., Roecklein, J. A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet. 12, 72–77 (1996).

    Article  CAS  Google Scholar 

  26. Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  CAS  Google Scholar 

  27. Walhout, A. J. M., Endoh, H., Thierry-Mieg, N., Wong, W. & Vidal, M. A model of elegance. Am. J. Hum. Genet. 63, 955–961 (1998).

    Article  CAS  Google Scholar 

  28. Hengartner, M. O. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. & Priess, J. R.) 383–415 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  29. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355– 1357 (1998).

    Article  CAS  Google Scholar 

  30. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122– 11126 (1997).

    Article  CAS  Google Scholar 

  31. Choi, K. Y., Satterberg, B., Lyons, D. M. & Elion, E. A. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512 (1994).

    Article  CAS  Google Scholar 

  32. Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 (1995).

    Article  CAS  Google Scholar 

  33. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291– 294 (1998).

    Article  CAS  Google Scholar 

  34. Harlow, E., Whyte, P., Franza, B. R. J. & Schley, C. Association of adenovirus early-region 1A proteins with cellular polypeptides . Mol. Cell. Biol. 6, 1579– 1589 (1986).

    Article  CAS  Google Scholar 

  35. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    Article  CAS  Google Scholar 

  36. Pandey, A. & Mann, M. Proteomics to study genes and genomes . Nature 405, 837–846 (2000).

    Article  CAS  Google Scholar 

  37. Yates, J. R. Mass spectrometry. From genomics to proteomics. Trends Genet. 16, 5–8 (2000).

    Article  CAS  Google Scholar 

  38. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol. 148, 635–651 (2000).This paper describes a comprehensive approach for identifying components of a large protein complex and describes validation strategies to strengthen these observations obtained by classical proteomic strategies.

    Article  CAS  Google Scholar 

  39. Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999). This paper describes a biochemical genomic approach in yeast by identifying enzymes using the yeast proteome fused to glutathione- S -transferase (GST).

    Article  CAS  Google Scholar 

  40. Burge, C. & Karlin, S. Prediction of complete structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  41. Birney, E. & Durbin, R. Using GeneWise in the Drosophila annotation experiment. Genome Res. 10, 547–548 (2000).

    Article  CAS  Google Scholar 

  42. Reese, M. G., Kulp, D., Tammana, H. & Haussler, D. Genie — gene finding in Drosophila melanogaster. Genome Res. 10, 529–538 (2000).

    Article  CAS  Google Scholar 

  43. Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzonis, C. A. Protein interaction maps for complete genomes based on gene fusion events . Nature 402, 86–89 (1999).

    Article  CAS  Google Scholar 

  44. Marcotte, E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751– 753 (1999).

    Article  CAS  Google Scholar 

  45. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999). References 43 45 were among the first to describe in silico reverse proteomic strategies.

    Article  CAS  Google Scholar 

  46. Xenarios, I. et al. DIP: the database of interacting proteins. Nucleic Acids Res. 28, 289–291 ( 2000).

    Article  CAS  Google Scholar 

  47. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. & Yeates, T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    Article  CAS  Google Scholar 

  48. Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).This paper describes the first, small-scale, worm protein interaction map using the yeast two-hybrid system.

    Article  CAS  Google Scholar 

  49. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245– 246 (1989).

    Article  CAS  Google Scholar 

  50. Finley, R. L. Jr & Brent, R. Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Natl Acad. Sci. USA 91, 12980–12984 (1994).

    Article  CAS  Google Scholar 

  51. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  52. Ito, T. et al. Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143–1147 ( 2000).References 51 and 52 describe large-scale protein interaction maps for yeast using the yeast two-hybrid system.

    Article  CAS  Google Scholar 

  53. Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277–282 (1997).

    Article  CAS  Google Scholar 

  54. Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95–110 (2000).

    Article  CAS  Google Scholar 

  55. Flores, A. et al. A protein–protein interaction map of yeast RNA polymerase III. Proc. Natl Acad. USA 96, 7815– 7820 (1999).

    Article  CAS  Google Scholar 

  56. Walhout, A. J. M., Boulton, S. J. & Vidal, M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88 –94 (2000).

    Article  CAS  Google Scholar 

  57. Garrels, J. I. YPD — A database for the proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 24, 46–49 (1996).

    Article  CAS  Google Scholar 

  58. Ferguson, E. L. & Horvitz, H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123 , 109–121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Solari, F. & Ahringer, J. NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. Curr. Biol. 10, 223–226 ( 2000).

    Article  CAS  Google Scholar 

  60. Hsieh, J. et al. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev. 13, 2958– 2970 (1999).

    Article  CAS  Google Scholar 

  61. Thomas, J. H. & Horvitz, H. R. The C. elegans gene lin-36 acts cell autonomously in the lin-35 Rb pathway. Development 126, 3449–3459 (1999).

    CAS  PubMed  Google Scholar 

  62. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851–861 (1998).

    Article  CAS  Google Scholar 

  63. Wittinghofer, A. & Nassar, N. How Ras-related proteins talk to their effectors. Trends Biochem. Sci. 21, 488–491 (1996).

    Article  CAS  Google Scholar 

  64. Tan, P. B. & Kim, S. K. Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet. 15, 145–149 (1999).

    Article  CAS  Google Scholar 

  65. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 ( 1998).

    Article  CAS  Google Scholar 

  66. Petcherski, A. G. & Kimble, J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405, 364–368 ( 2000).

    Article  CAS  Google Scholar 

  67. Damelin, M. & Silver, P. A. Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol. Cell 5, 133– 140 (2000). This paper describes the use of fluorescence resonance energy transfer (FRET) for protein interaction mapping in vivo in yeast.

    Article  CAS  Google Scholar 

  68. Kaech, S. M., Whitfield, C. W. & Kim, S. K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761– 771 (1998).

    Article  CAS  Google Scholar 

  69. Vidal, M., Brachmann, R., Fattaey, A., Harlow, E. & Boeke, J. D. Reverse two-hybrid and one-hybrid systems to detect dissocation of protein–protein and DNA–protein interactions. Proc. Natl Acad. Sci. USA 93, 10315–10320 (1996).

    Article  CAS  Google Scholar 

  70. Vidal, M., Braun, P., Chen, E., Boeke, J. D. & Harlow, E. Genetic characterization of a mammalian protein–protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl Acad. Sci. USA 93, 10321– 10326 (1996).

    Article  CAS  Google Scholar 

  71. Vidal, M. & Endoh, H. Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17 , 374–381 (1999).

    Article  CAS  Google Scholar 

  72. Walhout, A. J. M. et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328, 575–592 ( 2000).

    Article  CAS  Google Scholar 

  73. Zozulya, S., Lioubin, M., Hill, R. J., Abram, C. & Gishizky, M. L. Mapping signal transduction pathways by phage display . Nature Biotechnol. 17, 1193– 1198 (1999).

    Article  CAS  Google Scholar 

  74. Pelletier, J. N., Arndt, K. M., Pluckthun, A. & Michnick, S. W. An in vivo library-versus-library selection of optimized protein–protein interactions. Nature Biotechnol. 17, 683 –690 (1999).

    Article  CAS  Google Scholar 

  75. Walhout, A. J. M. & Vidal, M. A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res. 9, 1128– 1134 (1999).

    Article  CAS  Google Scholar 

  76. Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. Mol. Cell. Biol. 17, 3094–3102 ( 1997).

    Article  CAS  Google Scholar 

  77. Sternberg, P. W. & Han, M. Genetics of RAS signalling in C. elegans. Trends Genet. 14, 466–472 (1998).

    Article  CAS  Google Scholar 

  78. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Boulton, L. Matthews and J. Dekker for critical reading of the manuscript. The work from this laboratory is supported by grants from the NHGRI, the NCI and the MGRI awarded to M.V.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

CED-4

CED-9

Ste5p

topoisomerase II

Gal4p

LIN-12

GLP-1

LAG-1

LET-23

FURTHER INFORMATION

Yeast proteome database

Yeast two-hybrid protein interaction map

In silico protein interaction map

Nematode two-hybrid protein interaction map

ENCYCLOPEDIA OF LIFE SCIENCES

Protein quaternary structure: subunit–subunit interactions

Glossary

ORTHOLOGUES

Genes that belong to different organisms and that have a similar function.

EXPRESSION-PROFILING EXPERIMENTS

One of the first functional genomic approaches developed, in which expression levels of large sets of transcripts are compared under different experimental conditions, or during development of an organism in a large-scale, high-throughput fashion.

PROTEOME

The complete set of (predicted) proteins, by analogy to genome (the complete genetic material).

EPISTASIS ANALYSIS

Epistasis is the masking of a phenotype caused by a mutation in one gene by a mutation in another gene. Epistasis analysis can therefore be used to dissect the order in which genes in a genetic pathway act.

SPLICEOSOME

Molecular machine involved in gene splicing.

TWO-HYBRID MATRIX EXPERIMENTS

The systematic testing of different protein pairs for a two-hybrid interaction phenotype.

CONTIG

Usually refers to an overlapping set of DNA fragments. Here, we use contig in the context of interaction clusters in which contiguous series of interactions can be found.

COMPLEMENTATION GROUP

Independent mutations in a single locus that fail to complement the phenotypes they confer.

CLUSTERING ANALYSIS

By looking for interaction partners that have been found with multiple baits, interaction contigs can be identified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walhout, A., Vidal, M. Protein interaction maps for model organisms. Nat Rev Mol Cell Biol 2, 55–63 (2001). https://doi.org/10.1038/35048107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing