Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nuclear pore complex: understanding its function through structural insight

Key Points

  • Structural, biochemical and cell biology investigations of the nuclear pore complex (NPC) over the past 60 years have contributed to explaining its canonical features.

  • Recently, in vitro and in situ investigations have converged to produce the first pseudo-atomic model of the NPC central core.

  • It seems that nucleoporins, the building blocks of the NPC, are conformationally labile and locally adapt to serve multiple structural roles.

  • A network of short linear motifs is essential for holding the scaffold of the NPC together and offers a novel and attractive scientific concept of how scaffolding might be regulated by post-translational modifications.

  • Prospectively, these structural insights might trigger novel types of investigations that will shed light on the mechanism behind nucleocytoplasmic transport (as well as other functions of the NPC) and the disease-relevance of nucleoporin dysfunction.

Abstract

Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular architecture, composition and functions of nuclear pores.
Figure 2: Timeline of hallmark discoveries in structural NPC research.
Figure 3: Short linear motifs in NUPs connect major NPC modules.
Figure 4: Architecture and organization of the NPC scaffold.
Figure 5: Mutations in human NUPs may affect NPC structure and function to lead to disease.

Similar content being viewed by others

References

  1. Doye, V. & Hurt, E. C. From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol. 9, 401–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Rout, M. P. et al. The yeast nuclear pore complex: Composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz, T. U. The structure inventory of the nuclear pore complex. J. Mol. Biol. 428, 1986–2000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dickmanns, A., Kehlenbach, R. H. & Fahrenkrog, B. Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int. Rev. Cell Mol. Biol. 320, 171–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Hurt, E. & Beck, M. Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. Curr. Opin. Cell Biol. 34, 31–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. von Appen, A. & Beck, M. Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J. Mol. Biol. 428, 2001–2010 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz, T. U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Belgareh, N. et al. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell 9, 3475–3492 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ulrich, A., Partridge, J. R. & Schwartz, T. U. The stoichiometry of the nucleoporin 62 subcomplex of the nuclear pore in solution. Mol. Biol. Cell 25, 1484–1492 (2014). This work demonstrates a 1:1:1 stoichiometry of the NUP62 complex, but non-canonical stoichiometries when a coiled-coil partner is absent.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–286 (2011). This study shows that NUPs from a eukaryotic thermophile have superior properties for in vitro reconstitution.

    Article  CAS  PubMed  Google Scholar 

  14. Grandi, P., Schlaich, N., Tekotte, H. & Hurt, E. C. Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J. 14, 76–87 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schellhaus, A. K., De Magistris, P. & Antonin, W. Nuclear reformation at the end of mitosis. J. Mol. Biol. 428, 1962–1985 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Gay, S. & Foiani, M. Nuclear envelope and chromatin, lock and key of genome integrity. Int. Rev. Cell Mol. Biol. 317, 267–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ptak, C., Aitchison, J. D. & Wozniak, R. W. The multifunctional nuclear pore complex: A platform for controlling gene expression. Curr. Opin. Cell Biol. 28, 46–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Pascual-Garcia, P. & Capelson, M. Nuclear pores as versatile platforms for gene regulation. Curr. Opin. Genet. Dev. 25, 110–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Sood, V. & Brickner, J. H. Nuclear pore interactions with the genome. Curr. Opin. Genet. Dev. 25, 43–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Light, W. H. & Brickner, J. H. Nuclear pore proteins regulate chromatin structure and transcriptional memory by a conserved mechanism. Nucleus 4, 357–360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Imamoto, N. & Funakoshi, T. Nuclear pore dynamics during the cell cycle. Curr. Opin. Cell Biol. 24, 453–459 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Chatel, G. & Fahrenkrog, B. Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 3, 162–171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zuleger, N., Robson, M. I. & Schirmer, E. C. The nuclear envelope as a chromatin organizer. Nucleus 2, 339–349 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagai, S., Davoodi, N. & Gasser, S. M. Nuclear organization in genome stability: SUMO connections. Cell Res. 21, 474–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van de Vosse, D. W., Wan, Y., Wozniak, R. W. & Aitchison, J. D. Role of the nuclear envelope in genome organization and gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 147–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arib, G. & Akhtar, A. Multiple facets of nuclear periphery in gene expression control. Curr. Opin. Cell Biol. 23, 346–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Liang, Y. & Hetzer, M. W. Functional interactions between nucleoporins and chromatin. Curr. Opin. Cell Biol. 23, 65–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Kohler, A. & Hurt, E. Gene regulation by nucleoporins and links to cancer. Mol. Cell 38, 6–15 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Capelson, M., Doucet, C. & Hetzer, M. W. Nuclear pore complexes: Guardians of the nuclear genome. Cold Spring Harb. Symp. Quant. Biol. 75, 585–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Callan, H. G., Randall, J. T. & Tomlin, S. G. An electron microscope study of the nuclear membrane. Nature 163, 280–281 (1949).

    Article  CAS  PubMed  Google Scholar 

  31. Callan, H. G. & Tomlin, S. G. Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc. R. Soc. Lond. B 137, 367–378 (1950).

    Article  CAS  PubMed  Google Scholar 

  32. Afzelius, B. A. The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp. Cell Res. 8, 147–158 (1955).

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, N. G. On the nuclear envelope. Science 117, 517–521 (1953).

    Article  CAS  PubMed  Google Scholar 

  34. Watson, M. L. Further observations on the nuclear envelope of the animal cell. J. Biophys. Biochem. Cytol. 6, 147–156 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gall, J. G. Octagonal nuclear pores. J. Cell Biol. 32, 391–399 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dwyer, N. & Blobel, G. A modified procedure for isolation of a pore complex-lamina fraction from rat liver nuclei. J. Cell Biol. 70, 581–591 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Aaronson, R. P. & Blobel, G. Isolation of nuclear pore complexes in association with a lamina. Proc. Natl Acad. Sci. USA 72, 1007–1011 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerace, L., Ottaviano, Y. & Kondor-Koch, C. Identification of a major polypeptide of the nuclear pore complex. J. Cell Biol. 95, 826–837 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Wozniak, R. W., Bartnik, E. & Blobel, G. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J. Cell Biol. 108, 2083–2092 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Greber, U. F., Senior, A. & Gerace, L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large luminal domain and a small cytoplasmic tail. EMBO J. 9, 1495–1502 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davis, L. I. & Blobel, G. Identification and characterization of a nuclear pore complex protein. Cell 45, 699–709 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Snow, C. M., Senior, A. & Gerace, L. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J. Cell Biol. 104, 1143–1156 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Uno, S. N. et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat. Chem. 6, 681–689 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Loschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).

    PubMed  Google Scholar 

  46. Pleiner, T. et al. Nanobodies: Site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Holt, G. D. & Hart, G. W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049–8057 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, L. I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: Glycosylation through a previously unidentified cellular pathway. Proc. Natl Acad. Sci. USA 84, 7552–7556 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanover, J. A., Cohen, C. K., Willingham, M. C. & Park, M. K. O-Linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J. Biol. Chem. 262, 9887–9894 (1987).

    Article  CAS  PubMed  Google Scholar 

  50. Park, M. K., D'Onofrio, M., Willingham, M. C. & Hanover, J. A. A monoclonal antibody against a family of nuclear pore proteins (nucleoporins): O-linked N-acetylglucosamine is part of the immunodeterminant. Proc. Natl Acad. Sci. USA 84, 6462–6466 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finlay, D. R., Newmeyer, D. D., Price, T. M. & Forbes, D. J. Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J. Cell Biol. 104, 189–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Dabauvalle, M. C., Benavente, R. & Chaly, N. Monoclonal antibodies to a Mr 68,000 pore complex glycoprotein interfere with nuclear protein uptake in Xenopus oocytes. Chromosoma 97, 193–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Dabauvalle, M. C., Schulz, B., Scheer, U. & Peters, R. Inhibition of nuclear accumulation of karyophilic proteins in living cells by microinjection of the lectin wheat germ agglutinin. Exp. Cell Res. 174, 291–296 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Yoneda, Y., Imamoto-Sonobe, N., Yamaizumi, M. & Uchida, T. Reversible inhibition of protein import into the nucleus by wheat germ agglutinin injected into cultured cells. Exp. Cell Res. 173, 586–595 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Hurt, E. C. A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. 7, 4323–4334 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nehrbass, U. et al. NSP1: A yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain. Cell 61, 979–989 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Davis, L. I. & Fink, G. R. The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61, 965–978 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Wente, S. R., Rout, M. P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119, 705–723 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Wimmer, C., Doye, V., Grandi, P., Nehrbass, U. & Hurt, E. C. A new subclass of nucleoporins that functionally interacts with nuclear pore protein NSP1. EMBO J. 11, 5051–5061 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doye, V. & Hurt, E. C. Genetic approaches to nuclear pore structure and function. Trends Genet. 11, 235–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Grandi, P., Doye, V. & Hurt, E. C. Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 12, 3061–3071 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, B. R., Powers, M., Park, M., Fischer, W. & Forbes, D. J. Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. Mol. Biol. Cell 11, 3381–3936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sukegawa, J. C. & Blobel, G. A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72, 29–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Powers, M. A., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J. Cell Biol. 136, 241–250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grandi, P. et al. Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol. Biol. Cell 8, 2017–2038 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rout, M. P. & Blobel, G. Isolation of the yeast nuclear pore complex. J. Cell Biol. 123, 771–783 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Finlay, D. R., Meier, E., Bradley, P., Horecka, J. & Forbes, D. J. A complex of nuclear pore proteins required for pore function. J. Cell Biol. 114, 169–183 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Dabauvalle, M. C., Loos, K. & Scheer, U. Identification of a soluble precursor complex essential for nuclear pore assembly. Chromosoma 100, 56–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kampmann, M. & Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol. 16, 782–788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kelley, K., Knockenhauer, K. E., Kabachinski, G. & Schwartz, T. U. Atomic structure of the Y complex of the nuclear pore. Nat. Struct. Mol. Biol. 22, 425–431 (2015). This investigation reveals the crystal structure of the central hub of the Myceliophthora thermophila Y-complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stuwe, T. et al. Architecture of the nuclear pore complex coat. Science 347, 1148–1152 (2015). This study reports the crystal structure of the yeast S. cerevisiae hexameric Y-complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goldberg, M. W., Wiese, C., Allen, T. D. & Wilson, K. L. Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: Evidence for structural intermediates in nuclear pore complex assembly. J. Cell Sci. 110, 409–420 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Goldberg, M. W. & Allen, T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119, 1429–1440 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Jarnik, M. & Aebi, U. Toward a more complete 3D structure of the nuclear pore complex. J. Struct. Biol. 107, 291–308 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after epon extraction from sections: A new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 111, 148–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Reichelt, R. et al. Correlation between structure and mass distribution of nuclear pore complex components. J. Cell Biol. 110, 883–894 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell 69, 1133–1141 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Pante, N., Bastos, R., McMorrow, I., Burke, B. & Aebi, U. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol. 126, 603–617 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Unwin, P. N. & Milligan, R. A. A large particle associated with the perimeter of the nuclear pore complex. J. Cell Biol. 93, 63–75 (1982).

    Article  CAS  PubMed  Google Scholar 

  84. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248, 273–293 (1995).

    CAS  PubMed  Google Scholar 

  86. Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Maimon, T., Elad, N., Dahan, I. & Medalia, O. The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20, 998–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. von Appen, A. et al. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hodel, A. et al. The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol. Cell 10, 347–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Hoelz, A., Debler, E. W. & Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613–643 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Berka, R. M. et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29, 922–927 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Andersen, K. R. et al. Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. eLife 2, e00745 (2013). This paper shows that large scaffold NUPs, whose crystal structures could be obtained, can bind to FG-NUPs and translocate through NPCs by facilitated diffusion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Bailer, S. M. et al. Nup116p and Nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor Gle2p. EMBO J. 17, 1107–1119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoshida, K., Seo, H. S., Debler, E. W., Blobel, G. & Hoelz, A. Structural and functional analysis of an essential nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex. Proc. Natl Acad. Sci. USA 108, 16571–16576 (2011). The authors report the crystal structure of a cytoplasmically oriented NUP complex, clarifying the mode of NUP interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matsuura, Y., Lange, A., Harreman, M. T., Corbett, A. H. & Stewart, M. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J. 22, 5358–5369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schrader, N. et al. The crystal structure of the Ran–Nup153ZnF2 complex: A general Ran docking site at the nuclear pore complex. Structure 16, 1116–1125 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    Article  PubMed  Google Scholar 

  102. Imamoto, N., Tachibana, T., Matsubae, M. & Yoneda, Y. A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J. Biol. Chem. 270, 8559–8565 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Radu, A., Blobel, G. & Moore, M. S. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc. Natl Acad. Sci. USA 92, 1769–1773 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Melchior, F., Paschal, B., Evans, J. & Gerace, L. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123, 1649–1659 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. & Görlich, D. NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Görlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Rexach, M. & Blobel, G. Protein import into nuclei: Association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Schmidt, H. B. & Gorlich, D. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41, 46–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: The hole picture. Trends Cell Biol. 13, 622–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Lemke, E. A. The multiple faces of disordered nucleoporins. J. Mol. Biol. 428, 2011–2024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sakiyama, Y., Mazur, A., Kapinos, L. E. & Lim, R. Y. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat. Nanotechnol. 11, 719–723 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Milles, S. et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163, 734–745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Raveh, B. et al. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proc. Natl Acad. Sci. USA 113, E2489–E2497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6, 197–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Schrader, N. et al. Structural basis of the Nic96 subcomplex organization in the nuclear pore channel. Mol. Cell 29, 46–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Berke, I. C., Boehmer, T., Blobel, G. & Schwartz, T. U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol. 167, 591–597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Chug, H., Trakhanov, S., Hulsmann, B. B., Pleiner, T. & Gorlich, D. Crystal structure of the metazoan Nup62–Nup58–Nup54 nucleoporin complex. Science 350, 106–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Stuwe, T. et al. Architecture of the fungal nuclear pore inner ring complex. Science 350, 56–64 (2015). References 122 and 123 reveal the crystal structures of the NUP62 and Nsp1 channel complexes from X. laevis and C thermophilum , respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gaik, M. et al. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. J. Cell Biol. 208, 283–297 (2015). The authors develop an integrated 3D structural model of the Nup82 complex and propose how it embeds into the NPC scaffold, showing that it projects towards the central channel in agreement with reference 125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bui, K. H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Marelli, M., Lusk, C. P., Chan, H., Aitchison, J. D. & Wozniak, R. W. A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope. J. Cell Biol. 153, 709–724 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Doucet, C. M., Esmery, N., de Saint-Jean, M. & Antonny, B. Membrane curvature sensing by amphipathic helices is modulated by the surrounding protein backbone. PLoS ONE 10, e0137965 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kim, S. J. et al. Integrative structure–function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol. Cell. Proteomics 13, 2911–2926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meszaros, N. et al. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vollmer, B. et al. Nup153 recruits the Nup107–160 complex to the inner nuclear membrane for interphasic nuclear pore complex assembly. Dev. Cell 33, 717–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Vollmer, B. et al. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 31, 4072–4084 (2012). References 130–132 report the membrane anchoring of NUPs and NUP complexes to the nuclear envelope and the role of this anchoring in the regulation of membrane curvature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ori, A. et al. Cell type-specific nuclear pores: A case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Madrid, A. S., Mancuso, J., Cande, W. Z. & Weis, K. The role of the integral membrane nucleoporins Ndc1p and Pom152p in nuclear pore complex assembly and function. J. Cell Biol. 173, 361–371 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, H. L., De Souza, C. P., Osmani, A. H. & Osmani, S. A. The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84–120 complex. Mol. Biol. Cell 20, 616–630 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Onischenko, E., Stanton, L. H., Madrid, A. S., Kieselbach, T. & Weis, K. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185, 475–491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Miao, M., Ryan, K. J. & Wente, S. R. The integral membrane protein Pom34p functionally links nucleoporin subcomplexes. Genetics 172, 1441–1457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fischer, J., Teimer, R., Amlacher, S., Kunze, R. & Hurt, E. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22, 774–781 (2015). This work describes the in vitro reconstitution of a large part of the NPC protomer, a process that depended on SLMs within linker NUPs.

    Article  CAS  PubMed  Google Scholar 

  139. Lin, D. H. et al. Architecture of the symmetric core of the nuclear pore. Science 352, aaf1015 (2016). This study reports the X-ray structure of scaffold NUPs with bound SLMs from linker NUPs and the docking of these structures into the tomographic map of the human NPC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Laurell, E. et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144, 539–550 (2011). This study demonstrates that mitotic phosphorylation of the linker NUP NUP98 in human cells induces disintegration of the NPC during prophase.

    Article  CAS  PubMed  Google Scholar 

  141. Onischenko, E. A., Gubanova, N. V., Kiseleva, E. V. & Hallberg, E. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell 16, 5152–5162 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hattersley, N. et al. A nucleoporin docks protein phosphatase 1 to direct meiotic chromosome segregation and nuclear assembly. Dev. Cell 38, 463–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Damelin, M. & Silver, P. A. In situ analysis of spatial relationships between proteins of the nuclear pore complex. Biophys. J. 83, 3626–3636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fahrenkrog, B. et al. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Otsuka, S., Szymborska, A. & Ellenberg, J. Imaging the assembly, structure, and function of the nuclear pore inside cells. Methods Cell Biol. 122, 219–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kampmann, M., Atkinson, C. E., Mattheyses, A. L. & Simon, S. M. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 18, 643–649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ori, A., Andres-Pons, A. & Beck, M. The use of targeted proteomics to determine the stoichiometry of large macromolecular assemblies. Methods Cell Biol. 122, 117–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Olinares, P. D. et al. A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal. Chem. 88, 2799–2807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mi, L., Goryaynov, A., Lindquist, A., Rexach, M. & Yang, W. Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo. Sci. Rep. 5, 9372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Asakawa, H. et al. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 5, 149–162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Eibauer, M. et al. Structure and gating of the nuclear pore complex. Nat. Commun. 6, 7532 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Kosinski, J. et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352, 363–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Seo, H. S. et al. Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. Proc. Natl Acad. Sci. USA 106, 14281–14286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dodonova, S. O. et al. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Robinson, P. J. et al. Molecular architecture of the yeast Mediator complex. eLife 4, e08719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Erzberger, J. P. et al. Molecular architecture of the 40S–eIF1–eIF3 translation initiation complex. Cell 158, 1123–1135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sharma, A., Solmaz, S. R., Blobel, G. & Melcak, I. Ordered regions of channel nucleoporins NUP62, NUP54, and NUP58 form dynamic complexes in solution. J. Biol. Chem. 290, 18370–18378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Solmaz, S. R., Chauhan, R., Blobel, G. & Melcak, I. Molecular architecture of the transport channel of the nuclear pore complex. Cell 147, 590–602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Koh, J. & Blobel, G. Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161, 1361–1373 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Brohawn, S. G. & Schwartz, T. U. A lattice model of the nuclear pore complex. Commun. Integr. Biol. 2, 205–207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Debler, E. W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell 32, 815–826 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Colombi, P., Webster, B. M., Frohlich, F. & Lusk, C. P. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. J. Cell Biol. 203, 215–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Musser, S. M. & Grunwald, D. Deciphering the structure and function of nuclear pores using single-molecule fluorescence approaches. J. Mol. Biol. 428, 2091–2119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Seo, H. S., Blus, B. J., Jankovic, N. Z. & Blobel, G. Structure and nucleic acid binding activity of the nucleoporin Nup157. Proc. Natl Acad. Sci. USA 110, 16450–16455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kerscher, O., Hieter, P., Winey, M. & Basrai, M. A. Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157, 1543–1553 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mor, A., White, M. A. & Fontoura, B. M. Nuclear trafficking in health and disease. Curr. Opin. Cell Biol. 28, 28–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Miyake, N. et al. Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am. J. Hum. Genet. 97, 555–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Braun, D. A. et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat. Genet. 48, 457–465 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Doucet, C. M., Talamas, J. A. & Hetzer, M. W. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141, 1030–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Weinberg-Shukron, A. et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J. Clin. Invest. 125, 4295–4304 (2015). References 175, 176 and 178 show that point mutations in housekeeping NUPs can cause specific human diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  178. DeGrasse, J. A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119–2130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Marsh, J. A. & Teichmann, S. A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Obado, S. O. et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 14, e1002365 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T. & Hara-Nishimura, I. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22, 4084–4097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Asakawa, H. et al. Uncleavable Nup98–Nup96 is functional in the fission yeast Schizosaccharomyces pombe. FEBS Open Bio 5, 508–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wong, C. C., Traynor, D., Basse, N., Kay, R. R. & Warren, A. J. Defective ribosome assembly in Shwachman–Diamond syndrome. Blood 118, 4305–4312 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Neal for his constructive comments on the manuscript. M.B. acknowledges funding from the European Molecular Biology Laboratory and the European Research Council (309271-NPCAtlas). E.H. is a recipient of a grant from the Deutsche Forschungsgemeinschaft (DFG Hu363/10-1). The authors apologize to those authors whose publications could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Beck or Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

List of Chaetomium thermophilum, yeast and metazoan nucleoporins. (PDF 130 kb)

Supplementary information S2 (box)

Overproduced Nups sequester factors crucial for cell proliferation away from the NPC (PDF 101 kb)

PowerPoint slides

Glossary

Transcriptional memory

Genes expressed in proximity to nuclear pore complexes (gene gating) might remain there after their inactivation in order to be more rapidly re-activated.

Pseudo-atomic resolution

When atomic resolution has not been obtained directly but by a secondary method — such as by fitting multiple atomically resolved X-ray structures into a lower resolved cryo-electron microscopy structure — so not all aspects of the resulting structural model can be considered atomically resolved.

Nuclear lamina

A fibrillar intermediate filament network associated with the inner nuclear membrane. It consists of lamins, which can be categorized into A-type (lamins A and C) and B-type (lamins B1 and B2).

Composite epitope

An epitope present in various nucleoporins (NUPs), which turned out to be Phe- and Gly-repeats (FG-repeats), a low complexity sequence that is crucial to the function of FG-repeat-containing NUPs (FG-NUPs).

O-Linked β-N-acetylglucosamine modification

(O-GlcNAc modification). A post-translational modification that is attached to many FG-repeat-containing nucleoporins (FG-NUPs) by the enzyme O-GlcNAc transferase.

Epitope tagging

A technique in which a known epitope (for example, encoding an affinity tag) is fused to a bait protein, making it possible to detect and affinity-purify proteins for which no antibody is available.

Immuno-electron microscopy

An electron microscopy technique in which colloidal gold particle-conjugated antibodies are used to visualize the position of proteins or epitope-tagged proteins.

Pseudosymmetric

Strictly speaking, nuclear pore complexes are only eightfold rotationally symmetric with respect to the nucleocytoplasmic (central channel) axis. As a different subset of nucleoporins binds to the cytoplasmic and nuclear rings, the arrangement with respect to the nuclear envelope plane is often referred to as pseudosymmetric.

Particle averaging

Computational image processing to combine the information from many complexes (particles) into a single structure.

Non-isotropically resolved

Visualized in a manner that gives an incomplete or distorted view. Because nuclear pore complexes were primarily imaged in top view, the resulting structures were distorted along the nucleocytoplasmic axis; for example, the inner and outer nuclear membranes were not resolved.

Cryo-electron tomography

An imaging technique in which the object of interest is rotated within the cryo-electron microscope during the imaging and a virtual volume (tomogram) is subsequently calculated from the images.

Hydrogel

A network of polymer chains (in this case, FG-repeat-containing nucleoporins (FG-NUPs) in which water is the dispersion medium.

Ancestral coatomer elements

(ACEs). A type of α-helical repeat domain found in several scaffold nucleoporins that is similar to HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and TOR1) repeats but has a distinct arrangement of helices. As ACEs are also found in SEC31 of the coat protein complex II (COPII) coat, it has been argued that vesicle coats and nuclear pores are evolutionarily related.

Amphipathic motifs

Motifs found in many proteins that contain both polar and apolar properties. Amphipathic motifs can be responsible for associating proteins with membranes.

Asymmetric unit

One of the eight rotational segments of the nuclear pore. It has also been referred to as a protomer, the smallest unit of a protein complex, which forms larger hetero-oligomers by associating multiple copies of this unit with each other.

Epigenetic chromatin modification

Covalent post-translational histone modification by methylation, phosphorylation, acetylation, ubiquitylation or sumoylation, which can influence gene expression by altering chromatin structure or recruiting histone modifiers.

Aneuploidy

The presence of an abnormal number of chromosomes in a cell.

Glomerular podocytes

Cells in the Bowman's capsule of the kidney that wrap around the capillaries of the glomerulus and filter urine.

Meiotic DNA-damage response

A checkpoint control that monitors meiotic recombination during meiosis, blocking the entry into metaphase I as long as recombination is not efficiently established.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, M., Hurt, E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18, 73–89 (2017). https://doi.org/10.1038/nrm.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing