Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coupling changes in cell shape to chromosome segregation

Key Points

  • Animal cells undergo dramatic changes in their shape as they progress through mitosis and division. This process begins with rounding soon after cells enter mitosis.

  • Mitotic rounding is an active process that depends on a combination of de-adhesion, actomyosin-based contraction and osmotic swelling.

  • Adhesion remodelling is essential for normal cell rounding during mitosis and is triggered by inactivation of the small GTPase RAP1.

  • Entry into mitosis triggers a dramatic change in actin organization and dynamics, leading to the assembly of a formin-based actomyosin network that is tethered to the overlying membrane by activated ERM (Ezrin, Radixin, Moesin) proteins.

  • The changes in actin organization and cell shape that accompany mitotic exit are driven by a combination of actomyosin ring assembly and polar relaxation, which can be induced by chromatin-based signals.

  • Whereas remodelling of the actin and microtubule cytoskeletons seems to be relatively independent during mitotic entry, spindle elongation and cytokinesis must be tightly coupled in space and time to ensure precise cell division.

Abstract

Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell shape changes during mitosis.
Figure 2: Cortical actomyosin network reorganization during mitotic rounding.
Figure 3: Forces experienced by the cells during mitotic rounding.
Figure 4: Polar relaxation and coupling of chromosome segregation to cytokinesis.
Figure 5: Structural changes at mitotic exit.

Similar content being viewed by others

References

  1. Jongsma, M. L., Berlin, I. & Neefjes, J. On the move: organelle dynamics during mitosis. Trends Cell Biol. 25, 112–124 (2015).

    CAS  PubMed  Google Scholar 

  2. Balasubramanian, M. K., Srinivasan, R., Huang, Y. & Ng, K. H. Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms. Cytoskeleton 69, 942–956 (2012).

    CAS  PubMed  Google Scholar 

  3. Mercier, R., Kawai, Y. & Errington, J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 3, e04629 (2014).

    PubMed Central  Google Scholar 

  4. Nestor-Bergmann, A., Goddard, G. & Woolner, S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin. Cell Dev. Biol. 34, 133–139 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Fink, J. et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 13, 771–778 (2011).

    CAS  PubMed  Google Scholar 

  6. Stout, J. R., Rizk, R. S., Kline, S. L. & Walczak, C. E. Deciphering protein function during mitosis in PtK cells using RNAi. BMC Cell Biol. 7, 26 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. Woolner, S. & Papalopulu, N. Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev. Cell 22, 775–787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zang, J. H. et al. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol. Biol. Cell 8, 2617–2629 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lancaster, O. M. et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25, 270–283 (2013). This study shows that mitotic rounding (rather than the actin cytoskeleton) is important for spindle formation.

    CAS  PubMed  Google Scholar 

  10. Strzyz, P. J. et al. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 32, 203–219 (2015).

    CAS  PubMed  Google Scholar 

  11. Wyatt, T. P. et al. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proc. Natl Acad. Sci. USA 112, 5726–5731 (2015).

    CAS  PubMed  Google Scholar 

  12. Dao, V. T., Dupuy, A. G., Gavet, O., Caron, E. & de Gunzburg, J. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J. Cell Sci. 122, 2996–3004 (2009). This study identifies RAP1 as a key regulator of mitotic adhesion remodelling.

    CAS  PubMed  Google Scholar 

  13. Matthews, H. K. et al. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev. Cell 23, 371–383 (2012). This study identifies ECT2 as a master regulator of cell shape changes, during both entry into and exit from mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosa, A., Vlassaks, E., Pichaud, F. & Baum, B. Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry. Dev. Cell 32, 604–616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavet, O. & Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell 18, 533–543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Solomon, M. J., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M. W. Cyclin activation of p34cdc2. Cell 63, 1013–1024 (1990).

    CAS  PubMed  Google Scholar 

  17. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 (2003).

    CAS  PubMed  Google Scholar 

  18. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Jr. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005).

    CAS  PubMed  Google Scholar 

  19. Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun. 6, 6265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marchesi, S. et al. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev. Cell 31, 420–433 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nigg, E. A. The substrates of the cdc2 kinase. Semin. Cell Biol. 2, 261–270 (1991).

    CAS  PubMed  Google Scholar 

  22. Curtis, M., Nikolopoulos, S. N. & Turner, C. E. Actopaxin is phosphorylated during mitosis and is a substrate for cyclin B1/cdc2 kinase. Biochem. J. 363, 233–242 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    PubMed  Google Scholar 

  24. Suzuki, K. & Takahashi, K. Reduced cell adhesion during mitosis by threonine phosphorylation of β1 integrin. J. Cell. Physiol. 197, 297–305 (2003).

    CAS  PubMed  Google Scholar 

  25. Yamakita, Y. et al. Dissociation of FAK/p130CAS/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK. J. Cell Biol. 144, 315–324 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell 8, 109–119 (1997). This study was one of the few to study the formation of retraction fibres during mitotic rounding.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mali, P., Wirtz, D. & Searson, P. C. Interplay of RhoA and motility in the programmed spreading of daughter cells postmitosis. Biophys. J. 99, 3526–3534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreira, J. G., Pereira, A. J., Akhmanova, A. & Maiato, H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J. Cell Biol. 201, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bellis, J. et al. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. J. Cell Biol. 198, 331–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).

    CAS  PubMed  Google Scholar 

  33. Lecuit, T. & Wieschaus, E. Junctions as organizing centers in epithelial cells? A fly perspective. Traffic 3, 92–97 (2002).

    CAS  PubMed  Google Scholar 

  34. Clark, A. G., Dierkes, K. & Paluch, E. K. Monitoring actin cortex thickness in live cells. Biophys. J. 105, 570–580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bovellan, M. et al. Cellular control of cortical actin nucleation. Curr. Biol. 24, 1628–1635 (2014). This study identifies roles for different actin regulators in cortical actin network formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Castanon, I. et al. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat. Cell Biol. 15, 28–39 (2013).

    CAS  PubMed  Google Scholar 

  37. Ibarra, N., Pollitt, A. & Insall, R. H. Regulation of actin assembly by SCAR/WAVE proteins. Biochem. Soc. Trans. 33, 1243–1246 (2005).

    CAS  PubMed  Google Scholar 

  38. Davidson, A. J., Ura, S., Thomason, P. A., Kalna, G. & Insall, R. H. Abi is required for modulation and stability but not localization or activation of the SCAR/WAVE complex. Eukaryot. Cell 12, 1509–1516 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang, C. et al. CDK1-mediated phosphorylation of Abi1 attenuates Bcr-Abl-induced F-actin assembly and tyrosine phosphorylation of WAVE complex during mitosis. J. Biol. Chem. 286, 38614–38626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Skau, C. T., Neidt, E. M. & Kovar, D. R. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol. Biol. Cell 20, 2160–2173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miki, T., Smith, C. L., Long, J. E., Eva, A. & Fleming, T. P. Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature 362, 462–465 (1993).

    CAS  PubMed  Google Scholar 

  42. Maddox, A. S. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003). This study identifies RhoA as a key regulator of mitotic rounding.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuce, O., Piekny, A. & Glotzer, M. An ECT2–centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    PubMed  PubMed Central  Google Scholar 

  44. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136–143 (1999).

    CAS  PubMed  Google Scholar 

  45. Oceguera-Yanez, F. et al. Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. J. Cell Biol. 168, 221–232 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Motegi, F. & Sugimoto, A. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat. Cell Biol. 8, 978–985 (2006).

    CAS  PubMed  Google Scholar 

  47. Field, C. M. et al. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos. J. Cell Sci. 124, 2086–2095 (2011). This study shows how cell cycle state influences actin dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ritchey, L. & Chakrabarti, R. Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: implication in the mitotic process. Biochim. Biophys. Acta 1843, 2719–2729 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi, H., Funakoshi, H. & Nakamura, T. LIM-kinase as a regulator of actin dynamics in spermatogenesis. Cytogenet. Genome Res. 103, 290–298 (2003).

    CAS  PubMed  Google Scholar 

  50. Kuilman, T. et al. Identification of Cdk targets that control cytokinesis. EMBO J. 34, 81–96 (2015).

    CAS  PubMed  Google Scholar 

  51. Carreno, S. et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J. Cell Biol. 180, 739–746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008). References 51 and 52 identify roles for active ERM proteins in the assembly of the mitotic cortex.

    CAS  PubMed  Google Scholar 

  53. Li, Q. et al. Self-masking in an intact ERM-merlin protein: an active role for the central α-helical domain. J. Mol. Biol. 365, 1446–1459 (2007).

    CAS  PubMed  Google Scholar 

  54. Roubinet, C. et al. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis. J. Cell Biol. 195, 99–112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Janetopoulos, C. & Devreotes, P. Phosphoinositide signaling plays a key role in cytokinesis. J. Cell Biol. 174, 485–490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Maniti, O. et al. Binding of moesin and ezrin to membranes containing phosphatidylinositol (4,5) bisphosphate: a comparative study of the affinity constants and conformational changes. Biochim. Biophys. Acta 1818, 2839–2849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhai, Y., Kronebusch, P. J., Simon, P. M. & Borisy, G. G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135, 201–214 (1996).

    CAS  PubMed  Google Scholar 

  58. Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 9, 464–477 (2008).

    CAS  PubMed  Google Scholar 

  59. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011). This study was the first to propose a role for changes in osmotic pressure in generating the forces accompanying mitotic rounding.

    CAS  PubMed  Google Scholar 

  60. Son, S. et al. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J. Cell Biol. 211, 757–763 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zlotek-Zlotkiewicz, E., Monnier, S., Cappello, G., Le Berre, M. & Piel, M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 211, 765–774 (2015). This study shows that cells swell as they enter mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cattin, C. J. et al. Mechanical control of mitotic progression in single animal cells. Proc. Natl Acad. Sci. USA 112, 11258–11263 (2015).

    CAS  PubMed  Google Scholar 

  63. Sorce, B. et al. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat. Commun. 6, 8872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramanathan, S. P. et al. Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat. Cell Biol. 17, 148–159 (2015).

    CAS  PubMed  Google Scholar 

  65. Fischer-Friedrich, E., Hyman, A. A., Julicher, F., Muller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoijman, E., Rubbini, D., Colombelli, J. & Alsina, B. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape. Nat. Commun. 6, 7355 (2015).

    CAS  PubMed  Google Scholar 

  67. Kondo, T. & Hayashi, S. Mitotic cell rounding accelerates epithelial invagination. Nature 494, 125–129 (2013). This study shows how the forces generated by mitotic rounding can buckle a tissue.

    CAS  PubMed  Google Scholar 

  68. McCarthy Campbell, E. K., Werts, A. D. & Goldstein, B. A cell cycle timer for asymmetric spindle positioning. PLoS Biol. 7, e1000088 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Echard, A. & O'Farrell, P. H. The degradation of two mitotic cyclins contributes to the timing of cytokinesis. Curr. Biol. 13, 373–383 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mossaid, I. & Fahrenkrog, B. Complex commingling: nucleoporins and the spindle assembly checkpoint. Cells 4, 706–725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Doncic, A., Ben-Jacob, E. & Barkai, N. Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc. Natl Acad. Sci. USA 102, 6332–6337 (2005).

    CAS  PubMed  Google Scholar 

  72. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang, L. & Barford, D. Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr. Opin. Struct. Biol. 29, 1–9 (2014).

    CAS  PubMed  Google Scholar 

  74. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170–1177 (2011).

    CAS  PubMed  Google Scholar 

  75. Sivakumar, S. & Gorbsky, G. J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fededa, J. P. & Gerlich, D. W. Molecular control of animal cell cytokinesis. Nat. Cell Biol. 14, 440–447 (2012).

    CAS  PubMed  Google Scholar 

  77. Schellhaus, A. K., De Magistris, P. & Antonin, W. Nuclear reformation at the end of mitosis. J. Mol. Biol. 428, 1962–1985 (2015).

    PubMed  Google Scholar 

  78. Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995).

    CAS  PubMed  Google Scholar 

  79. Green, R. A., Paluch, E. & Oegema, K. Cytokinesis in animal cells. Annu. Rev. Cell Dev. Biol. 28, 29–58 (2012).

    CAS  PubMed  Google Scholar 

  80. Su, K. C., Takaki, T. & Petronczki, M. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev. Cell 21, 1104–1115 (2011). This study shows how ECT2 is localized to the plasma membrane at the cell midzone at the onset of anaphase.

    CAS  PubMed  Google Scholar 

  81. Kunda, P. et al. PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit. Curr. Biol. 22, 231–236 (2012).

    CAS  PubMed  Google Scholar 

  82. Mavrakis, M. et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat. Cell Biol. 16, 322–334 (2014).

    CAS  PubMed  Google Scholar 

  83. Founounou, N., Loyer, N. & Le Borgne, R. Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells. Dev. Cell 24, 242–255 (2013).

    CAS  PubMed  Google Scholar 

  84. Guillot, C. & Lecuit, T. Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev. Cell 24, 227–241 (2013).

    CAS  PubMed  Google Scholar 

  85. Takeda, T. et al. Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis. Open Biol. 3, 130081 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Roberts-Galbraith, R. H. et al. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site. Mol. Cell 39, 86–99 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rappaport, R. Cytokinesis in Animal Cells (Cambridge Univ. Press, 1996). This book summarizes decades of cell division research.

    Google Scholar 

  88. Rosenblatt, J., Cramer, L. P., Baum, B. & McGee, K. M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361–372 (2004).

    CAS  PubMed  Google Scholar 

  89. De Simone, A., Nedelec, F. & Gonczy, P. Dynein transmits polarized actomyosin cortical flows to promote centrosome separation. Cell Rep. 14, 2250–2262 (2016).

    CAS  PubMed  Google Scholar 

  90. Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–940 (1991).

    CAS  PubMed  Google Scholar 

  91. Mitchison, T. et al. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton 69, 738–750 (2012).

    CAS  PubMed  Google Scholar 

  92. White, E. A. & Glotzer, M. Centralspindlin: at the heart of cytokinesis. Cytoskeleton 69, 882–892 (2012).

    CAS  PubMed  Google Scholar 

  93. Piekny, A. J. & Glotzer, M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr. Biol. 18, 30–36 (2008).

    CAS  PubMed  Google Scholar 

  94. Nguyen, P. A. et al. Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346, 244–247 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bement, W. M., Benink, H. A. & von Dassow, G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 170, 91–101 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, D. & Glotzer, M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. eLife 4, e08898 (2015).

    PubMed Central  Google Scholar 

  97. Bastos, R. N., Penate, X., Bates, M., Hammond, D. & Barr, F. A. CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. J. Cell Biol. 198, 865–880 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Logan, M. R. & Mandato, C. A. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell 98, 377–388 (2006).

    CAS  PubMed  Google Scholar 

  99. Basant, A. et al. Aurora B kinase promotes cytokinesis by inducing centralspindlin oligomers that associate with the plasma membrane. Dev. Cell 33, 204–215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pacquelet, A., Uhart, P., Tassan, J. P. & Michaux, G. PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division. J. Cell Biol. 210, 1085–1099 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cabernard, C., Prehoda, K. E. & Doe, C. Q. A spindle-independent cleavage furrow positioning pathway. Nature 467, 91–94 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ou, G., Stuurman, N., D'Ambrosio, M. & Vale, R. D. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330, 677–680 (2010). These studies show that the position of the division plane is not always a simple consequence of spindle position.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yeh, E. et al. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol. Biol. Cell 11, 3949–3961 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008).

    CAS  PubMed  Google Scholar 

  105. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    CAS  PubMed  Google Scholar 

  106. Rodrigues, N. T. et al. Kinetochore-localized PP1–Sds22 couples chromosome segregation to polar relaxation. Nature 524, 489–492 (2015). These studies investigate the regulation and function of anaphase polar relaxation.

    CAS  PubMed  Google Scholar 

  107. Hickson, G. R., Echard, A. & O'Farrell, P. H. Rho-kinase controls cell shape changes during cytokinesis. Curr. Biol. 16, 359–370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wolpert, L. A relaxed modification of the Rappaport model for cytokinesis. J. Theor. Biol. 345, 109 (2014).

    PubMed  Google Scholar 

  109. Canman, J. C. et al. Determining the position of the cell division plane. Nature 424, 1074–1078 (2003).

    CAS  PubMed  Google Scholar 

  110. Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. Cell polarization during monopolar cytokinesis. J. Cell Biol. 181, 195–202 (2008). This study explores how the cytokinesis machinery responds to forced mitotic exit in the absence of a bipolar spindle.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14, 311–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kiyomitsu, T. & Cheeseman, I. M. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 154, 391–402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Connell, M., Cabernard, C., Ricketson, D., Doe, C. Q. & Prehoda, K. E. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol. Biol. Cell 22, 4220–4226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bird, S. L., Heald, R. & Weis, K. RanGTP and CLASP1 cooperate to position the mitotic spindle. Mol. Biol. Cell 24, 2506–2514 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Silverman-Gavrila, R. V., Hales, K. G. & Wilde, A. Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol. Biol. Cell 19, 3735–3744 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dehapiot, B. & Halet, G. Ran GTPase promotes oocyte polarization by regulating ERM (Ezrin/Radixin/Moesin) inactivation. Cell Cycle 12, 1672–1678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ohkura, H. & Yanagida, M. S. pombe gene sds22+ essential for a midmitotic transition encodes a leucine-rich repeat protein that positively modulates protein phosphatase-1. Cell 64, 149–157 (1991).

    CAS  PubMed  Google Scholar 

  118. Grusche, F. A. et al. Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology]. BMC Dev. Biol. 9, 14 (2009).

    PubMed  PubMed Central  Google Scholar 

  119. Wurzenberger, C. & Gerlich, D. W. Phosphatases: providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 12, 469–482 (2011).

    CAS  PubMed  Google Scholar 

  120. Lesage, B., Qian, J. & Bollen, M. Spindle checkpoint silencing: PP1 tips the balance. Curr. Biol. 21, R898–R903 (2011).

    CAS  PubMed  Google Scholar 

  121. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise — from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    CAS  PubMed  Google Scholar 

  122. Kitagawa, M. & Lee, S. H. The chromosomal passenger complex (CPC) as a key orchestrator of orderly mitotic exit and cytokinesis. Front. Cell Dev. Biol. 3, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Herszterg, S., Leibfried, A., Bosveld, F., Martin, C. & Bellaiche, Y. Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue. Dev. Cell 24, 256–270 (2013). This study asks how cell division is organized to generate a new cell–cell interface following division in a tissue.

    CAS  PubMed  Google Scholar 

  124. Morais-de-Sa, E. & Sunkel, C. E. Connecting polarized cytokinesis to epithelial architecture. Cell Cycle 12, 3583–3584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mitsushima, M. et al. Revolving movement of a dynamic cluster of actin filaments during mitosis. J. Cell Biol. 191, 453–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Neto, H., Collins, L. L. & Gould, G. W. Vesicle trafficking and membrane remodelling in cytokinesis. Biochem. J. 437, 13–24 (2011).

    CAS  PubMed  Google Scholar 

  127. Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

    CAS  PubMed  Google Scholar 

  128. Simon, G. C. et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J. 27, 1791–1803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chalamalasetty, R. B., Hummer, S., Nigg, E. A. & Sillje, H. H. Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. J. Cell Sci. 119, 3008–3019 (2006).

    CAS  PubMed  Google Scholar 

  130. Dambournet, D. et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 13, 981–988 (2011).

    CAS  PubMed  Google Scholar 

  131. Manukyan, A., Ludwig, K., Sanchez-Manchinelly, S., Parsons, S. J. & Stukenberg, P. T. A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J. Cell Sci. 128, 50–60 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).

    CAS  PubMed  Google Scholar 

  133. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    CAS  PubMed  Google Scholar 

  134. Mierzwa, B. & Gerlich, D. W. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525–538 (2014).

    CAS  PubMed  Google Scholar 

  135. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    PubMed  Google Scholar 

  136. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Maiato, H., Afonso, O. & Matos, I. A chromosome separation checkpoint: a midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition. Bioessays 37, 257–266 (2015).

    CAS  PubMed  Google Scholar 

  139. Floyd, S. et al. Spatiotemporal organization of Aurora-B by APC/CCdh1 after mitosis coordinates cell spreading through FHOD1. J. Cell Sci. 126, 2845–2856 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ferreira, J. G., Pereira, A. J., Akhmanova, A. & Maiato, H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J. Cell Biol. 201, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kressmann, S., Campos, C., Castanon, I., Furthauer, M. & Gonzalez-Gaitan, M. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nat. Cell Biol. 17, 333–339 (2015).

    CAS  PubMed  Google Scholar 

  143. Furthauer, M. & Gonzalez-Gaitan, M. Endocytosis and mitosis: a two-way relationship. Cell Cycle 8, 3311–3318 (2009).

    CAS  PubMed  Google Scholar 

  144. Jajoo, R. et al. Accurate concentration control of mitochondria and nucleoids. Science 351, 169–172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bernander, R. Archaea and the cell cycle. Mol. Microbiol. 29, 955–961 (1998).

    CAS  PubMed  Google Scholar 

  146. Mauser, J. F. & Prehoda, K. E. Inscuteable regulates the Pins-Mud spindle orientation pathway. PLoS ONE 7, e29611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Siller, K. H. & Doe, C. Q. Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Dev. Biol. 319, 1–9 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zheng, Z. et al. Evidence for dynein and astral microtubule-mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells. Mol. Biol. Cell 24, 901–913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Baum laboratory and anonymous reviewers for their critical reading of the text. B.B. and N.R. thank Cancer Research UK for funding, and B.B. thanks the UK Biotechnology and Biological Sciences Research Council (BBSRC) and University College London for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buzz Baum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Astral microtubules

A subpopulation of dynamic microtubules, which originate from the centrosomes but do not attach to the chromosomes. They are present only during mitosis.

Retraction fibres

Actin-rich fibres retained by cells as they round up as they enter mitosis. These hold the cells in place and are thought to guide spindle orientation to determine the division axis.

Adherens junctions

Protein complexes consisting of cadherins and catenin, which are involved in cell–cell junctions in epithelial and endothelial cells.

Tight junctions

Cell–cell junctions, consisting of occludins, claudins and associated proteins, which bring membranes of adjacent cells into close proximity to form a permeability barrier. They are positioned apical to the adherens junctions in vertebrates and (as septate junctions) basal to adherens junctions in most invertebrate epithelia.

ARP2/3 complex

A protein complex consisting of seven polypeptides (including actin-related protein 2 (ARP2) and ARP3), which regulates the nucleation of branched actin filament networks from the filament minus end.

Formins

Proteins defined by the presence of a formin homology 2 (FH2) domain, which nucleate actin filaments from growing (plus) ends to generate parallel or antiparallel filaments that are a good substrate for non-muscle myosin II.

Non-muscle myosin II

An ATP-dependent motor protein that forms large bipolar 'minifilaments'. In non-muscle cells, these both crosslink actin filaments and walk along actin filaments to drive network contraction.

Importins

Protein complexes that transport proteins containing nuclear localization sequences (NLS) into the nucleus. The complex consists of importin-α and importin-β.

Spindle assembly check point

The checkpoint that delays anaphase onset until chromosomes are properly attached to the metaphase spindle.

Anaphase-promoting complex

(APC). An E3 ubiquitin ligase that targets specific cell cycle proteins for degradation by the 26S proteasome upon satisfaction of the spindle assembly checkpoint, to trigger the separation of sister chromatids and the transition to anaphase.

Actomyosin contractile ring

A contractile structure composed of actin and myosin filaments that deforms the plasma membrane to drive cytokinesis.

Centralspindilin complex

A protein complex that localizes to overlapping antiparallel microtubules in anaphase to recruit proteins that drive local actomyosin ring formation, so that closure of the ring bisects the spindle.

Chromosomal passenger complex

(CPC). A protein complex consisting of kinase Aurora B and its regulatory subunits borealin, INCENP and survivin, which relocalize from kinetochores to overlapping antiparallel microtubules at the midzones of cells in anaphase, to regulate actomyosin ring formation and, later, abscission.

Midbody

Also called a Flemming body, the midbody is a structure that connects the two daughter cells towards the end of cytokinesis. It controls abscission, a process that leads to the physical separation of the two daughter cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramkumar, N., Baum, B. Coupling changes in cell shape to chromosome segregation. Nat Rev Mol Cell Biol 17, 511–521 (2016). https://doi.org/10.1038/nrm.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing