Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes

Key Points

  • Since 2007, the number of high-resolution studies of seven transmembrane domain (7TM) receptors (including G protein-coupled receptors) has greatly increased, providing new insights into signalling by a formerly intractable family of integral membrane proteins.

  • Although new structures have revealed many important pharmacological details about specific ligand-binding sites in different receptor classes, how signals are transduced by 7TM receptors from their ligand-binding pockets to their cytoplasmic partners remains poorly understood.

  • Structures of the β2-adrenergic receptor in complex with the heterotrimeric G protein Gs, and of rhodopsin in complex with arrestin, along with complementary biophysical studies, provide the most detailed views of how such signalling might occur.

  • Both heterotrimeric G proteins and arrestins, and probably G protein-coupled receptor kinases (GRKs), recognize activated 7TM receptors via a common mechanism involving a structural projection that packs into the cytoplasmic pockets formed on activated receptors. The projection is allosterically coupled to other domains, such that receptor docking translates into functional consequences inside the cell.

  • Interactions with activated receptors seem to involve relatively few specific contacts, which probably explains how a relatively small number of G proteins, arrestins and GRKs can recognize the activated state of hundreds of different 7TM receptors.

Abstract

A revolution in the analysis of seven transmembrane domain (7TM) receptors has provided detailed information about how these physiologically important signalling proteins interact with extracellular cues. However, it has proved much more challenging to understand how 7TM receptors convey information to their principal intracellular targets: heterotrimeric G proteins, G protein-coupled receptor kinases and arrestins. Recent structures now suggest a common mechanism that enables these structurally diverse cytoplasmic proteins to 'hitch a ride' on hundreds of different activated 7TM receptors in order to instigate physiological change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seven transmembrane domain (7TM) receptor families and their ligands.
Figure 2: Extracellular and cytoplasmic pockets of four different seven transmembrane domain (7TM) receptors.
Figure 3: Interactions of heterotrimeric G proteins and arrestins with seven transmembrane domain (7TM) receptors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol. 145, 927–932 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ritter, S. L. & Hall, R. A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10, 819–830 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    CAS  PubMed  Google Scholar 

  4. Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    CAS  PubMed  Google Scholar 

  5. Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27 (2012).

    CAS  PubMed  Google Scholar 

  6. Dijksterhuis, J. P., Petersen, J. & Schulte, G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br. J. Pharmacol. 171, 1195–1209 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wise, A., Gearing, K. & Rees, S. Target validation of G-protein coupled receptors. Drug Discov. Today 7, 235–246 (2002).

    CAS  PubMed  Google Scholar 

  8. Kahlert, M. & Hofmann, K. P. Reaction rate and collisional efficiency of the rhodopsin-transducin system in intact retinal rods. Biophys. J. 59, 375–386 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurevich, E. V., Tesmer, J. J., Mushegian, A. & Gurevich, V. V. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 133, 40–69 (2012).

    CAS  PubMed  Google Scholar 

  10. Tobin, A. B., Butcher, A. J. & Kong, K. C. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol. Sci. 29, 413–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krupnick, J. G., Gurevich, V. V. & Benovic, J. L. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem. 272, 18125–18131 (1997).

    CAS  PubMed  Google Scholar 

  12. Ferguson, S. S. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1996).

    CAS  PubMed  Google Scholar 

  13. Goodman, O. B. Jr et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).

    CAS  PubMed  Google Scholar 

  14. Daaka, Y. et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

    CAS  PubMed  Google Scholar 

  15. Luttrell, L. M. et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    CAS  PubMed  Google Scholar 

  16. Kenakin, T. & Miller, L. J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reiter, E., Ahn, S., Shukla, A. K. & Lefkowitz, R. J. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012).

    CAS  PubMed  Google Scholar 

  18. Raehal, K. M., Walker, J. K. & Bohn, L. M. Morphine side effects in β-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 314, 1195–1201 (2005).

    CAS  PubMed  Google Scholar 

  19. DeWire, S. M. et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    CAS  PubMed  Google Scholar 

  20. Kim, T. H. et al. The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schertler, G. F., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993).

    CAS  PubMed  Google Scholar 

  22. Unger, V. M., Hargrave, P. A., Baldwin, J. M. & Schertler, G. F. Arrangement of rhodopsin transmembrane α-helices. Nature 389, 203–206 (1997).

    CAS  PubMed  Google Scholar 

  23. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000). The first X-ray crystallographic structure of a 7TM receptor.

    CAS  PubMed  Google Scholar 

  24. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    CAS  PubMed  Google Scholar 

  25. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469, 236–240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015). This structure, along with that of an antagonist-bound μ-opioid receptor (see reference 108), provides a pair of models describing the transition from inactive to active receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). This structure, along with that of an antagonist-bound M2 muscarinic receptor (see reference 109), provides a pair of models describing the transition from inactive to active receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    CAS  PubMed  Google Scholar 

  35. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

    CAS  PubMed  Google Scholar 

  36. Szczepek, M. et al. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011). The first crystal structure of an activated 7TM receptor in complex with an intact cytoplasmic target, providing a high-resolution glimpse of conformational changes involved in nucleotide exchange.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015). An SFX crystal structure of the rhodopsin–arrestin 1 complex, along with confirmatory EM, DXMS and DEER studies. The results were consistent with those of Shukla et al . (reference 57).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    CAS  PubMed  Google Scholar 

  40. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016). Used a 15N-labelled 7TM receptor to map allosteric pathways induced by a series of ligands with a broad range of efficacy.

    CAS  PubMed  Google Scholar 

  41. Blankenship, E., Vahedi-Faridi, A. & Lodowski, D. T. The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation. Structure 23, 2358–2364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fenalti, G. et al. Molecular control of δ-opioid receptor signalling. Nature 506, 191–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, H. et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J. Biol. Chem. 290, 29127–29139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Slessareva, J. E. et al. Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein α-subunits for selective coupling. J. Biol. Chem. 278, 50530–50536 (2003).

    CAS  PubMed  Google Scholar 

  45. Choe, H. W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011). Provides a high-resolution snapshot of rhodopsin in its activated state bound to a Gα-derived peptide.

    CAS  PubMed  Google Scholar 

  46. Huang, C. C. & Tesmer, J. J. Recognition in the face of diversity: interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. J. Biol. Chem. 286, 7715–7721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    CAS  PubMed  Google Scholar 

  48. Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011). Complements the Rasmussen structure (see reference 37) by providing low-resolution glimpses of the β 2 AR–G s complex in single-particle electron microscopy reconstructions.

    CAS  PubMed  Google Scholar 

  49. Chung, K. Y. et al. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477, 611–615 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015). Atomistic molecular dynamics simulations at microsecond timescales, demonstrating conformational transitions in Gα that may underlie nucleotide release.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sternweis, P. & Robishaw, J. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  52. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777 (2006).

    CAS  PubMed  Google Scholar 

  53. Alexander, N. S. et al. Energetic analysis of the rhodopsin–G-protein complex links the α5 helix to GDP release. Nat. Struct. Mol. Biol. 21, 56–63 (2014).

    CAS  PubMed  Google Scholar 

  54. Abdulaev, N. G. et al. The receptor-bound “empty pocket” state of the heterotrimeric G-protein α-subunit is conformationally dynamic. Biochemistry 45, 12986–12997 (2006).

    CAS  PubMed  Google Scholar 

  55. Thomas, C. J. et al. A specific interaction of small molecule entry inhibitors with the envelope glycoprotein complex of the Junin hemorrhagic fever arenavirus. J. Biol. Chem. 286, 6192–6200 (2011).

    CAS  PubMed  Google Scholar 

  56. Gurevich, V. V. & Gurevich, E. V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110, 465–502 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014). Structure of a receptor–arrestin complex by single-particle electron microscopy analysis, suggesting two modes of interaction between the proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanson, S. M. et al. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl Acad. Sci. USA 103, 4900–4905 (2006).

    CAS  PubMed  Google Scholar 

  59. Sommer, M. E., Farrens, D. L., McDowell, J. H., Weber, L. A. & Smith, W. C. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J. Biol. Chem. 282, 25560–25568 (2007).

    CAS  PubMed  Google Scholar 

  60. Feuerstein, S. E. et al. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin. Biochemistry 48, 10733–10742 (2009).

    CAS  PubMed  Google Scholar 

  61. Neutze, R., Branden, G. & Schertler, G. F. Membrane protein structural biology using X-ray free electron lasers. Curr. Opin. Struct. Biol. 33, 115–125 (2015).

    CAS  PubMed  Google Scholar 

  62. Liu, W., Wacker, D., Wang, C., Abola, E. & Cherezov, V. Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Phil. Trans. R. Soc. B 369, 20130314 (2014).

    PubMed  Google Scholar 

  63. Song, X., Coffa, S., Fu, H. & Gurevich, V. V. How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 284, 685–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. The 2.8 Å crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97, 257–269 (1999).

    CAS  PubMed  Google Scholar 

  65. Milano, S. K., Kim, Y. M., Stefano, F. P., Benovic, J. L. & Brenner, C. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J. Biol. Chem. 281, 9812–9823 (2006).

    CAS  PubMed  Google Scholar 

  66. Balla, T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J. Cell Sci. 118, 2093–2104 (2005).

    CAS  PubMed  Google Scholar 

  67. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013). Provides insight into how phosphorylated loops or tails of 7TM receptors bind to and help to activate arrestins.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tobin, A. B. G-protein-coupled receptor phosphorylation: where, when and by whom. Br. J. Pharmacol. 153 (Suppl. 1), 167–176 (2008).

    Google Scholar 

  69. Gurevich, V. V. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J. Biol. Chem. 273, 15501–15506 (1998).

    CAS  PubMed  Google Scholar 

  70. Kern, R. C., Kang, D. S. & Benovic, J. L. Arrestin2/clathrin interaction is regulated by key N- and C-terminal regions in arrestin2. Biochemistry 48, 7190–7200 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Krupnick, J. G., Santini, F., Gagnon, A. W., Keen, J. H. & Benovic, J. L. Modulation of the arrestin-clathrin interaction in cells. Characterization of β-arrestin dominant-negative mutants. J. Biol. Chem. 272, 32507–32512 (1997).

    CAS  PubMed  Google Scholar 

  72. Pao, C. S., Barker, B. L. & Benovic, J. L. Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 48, 7325–7333 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boguth, C. A., Singh, P., Huang, C. C. & Tesmer, J. J. Molecular basis for activation of G protein-coupled receptor kinases. EMBO J. 29, 3249–3259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Noble, B., Kallal, L. A., Pausch, M. H. & Benovic, J. L. Development of a yeast bioassay to characterize G protein-coupled receptor kinases. Identification of an NH2-terminal region essential for receptor phosphorylation. J. Biol. Chem. 278, 47466–47476 (2003).

    CAS  PubMed  Google Scholar 

  75. Zhuang, T. et al. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc. Natl Acad. Sci. USA 110, 942–947 (2013).

    CAS  PubMed  Google Scholar 

  76. Shang, Y. & Filizola, M. Opioid receptors: structural and mechanistic insights into pharmacology and signaling. Eur. J. Pharmacol. 763, 206–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).

    CAS  PubMed  Google Scholar 

  78. Whorton, M. R. et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J. Biol. Chem. 283, 4387–4394 (2008).

    CAS  PubMed  Google Scholar 

  79. Bayburt, T. H., Leitz, A. J., Xie, G., Oprian, D. D. & Sligar, S. G. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881 (2007).

    CAS  PubMed  Google Scholar 

  80. Bayburt, T. H. et al. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286, 1420–1428 (2011).

    CAS  PubMed  Google Scholar 

  81. Vishnivetskiy, S. A. et al. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25, 2155–2162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsukamoto, H., Sinha, A., DeWitt, M. & Farrens, D. L. Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J. Mol. Biol. 399, 501–511 (2010).

    CAS  PubMed  Google Scholar 

  83. Shi, G. W. et al. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J. Biol. Chem. 280, 41184–41191 (2005).

    CAS  PubMed  Google Scholar 

  84. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  Google Scholar 

  85. Ghosh, E., Kumari, P., Jaiman, D. & Shukla, A. K. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol. 16, 69–81 (2015).

    CAS  PubMed  Google Scholar 

  86. Maeda, S. & Schertler, G. F. Production of GPCR and GPCR complexes for structure determination. Curr. Opin. Struct. Biol. 23, 381–392 (2013).

    CAS  PubMed  Google Scholar 

  87. Hilgart, M. C. et al. Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J. Synchrotron Radiat. 18, 717–722 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, J. L., Fischetti, R. F. & Yamamoto, M. Micro-crystallography comes of age. Curr. Opin. Struct. Biol. 22, 602–612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J. R. Soc. Interface 6 (Suppl. 5), 587–597 (2009).

    Google Scholar 

  90. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fenalti, G. et al. Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat. Struct. Mol. Biol. 22, 265–268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, H. et al. Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161, 833–844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fromme, P. XFELs open a new era in structural chemical biology. Nat. Chem. Biol. 11, 895–899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jeschke, G. DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63, 419–446 (2012).

    CAS  PubMed  Google Scholar 

  96. Bokoch, M. P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wuthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kofuku, Y. et al. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat. Commun. 3, 1045 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

    CAS  PubMed  Google Scholar 

  103. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. De Zorzi, R., Mi, W., Liao, M. & Walz, T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 65, 81–96 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).

    CAS  PubMed  Google Scholar 

  106. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jastrzebska, B. et al. Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. J. Struct. Biol. 176, 387–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sunahara, R. K., Tesmer, J. J., Gilman, A. G. & Sprang, S. R. Crystal structure of the adenylyl cyclase activator Gsα . Science 278, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Tesmer laboratory is supported by US National Institutes of Health (NIH) grants HL086865, HL122416 and HL071818, and fellowships from the American Cancer Society and the American Heart Association. The author thanks Mindy Mackey for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. G. Tesmer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Number of structures of 7TM transmembrane domains released from the Protein Data Bank per year (138 unique diffraction data sets at the time of writing). (PDF 1116 kb)

Supplementary information S2 (table)

Structures of 7TM receptors deposited in the Protein Data Bank (PDB) as of the end of 2015. (XLS 228 kb)

Related links

Related links

DATABASES

Protein Data Bank

Protein Data Bank

1F88

3PQR

2RH1

3SN6

4DKL

5C1M

3UON

4MQT

1AZT

4ZWJ

1CF1

4JQI

Glossary

Allosteric change

An alteration in the structure of a specific region of a protein that results from an event occurring at a remote site.

Transducin

The heterotrimeric G protein (also known as Gt) responsible for the propagation of visual signals from light-activated rhodopsin.

Homologous desensitization

The process by which receptors that recognize a specific agonist or signal become gradually resistant to further stimulation, often by downregulation of the number of receptors on the cell surface through endocytosis.

Clathrin-mediated endocytosis

A process by which membrane proteins are sequestered into distinct regions of the cell membrane, which are then internalized with the help of the protein clathrin to form intracellular vesicles.

Agonists

Molecules that promote a conformation (or an ensemble of conformations) of a receptor that is more capable of binding to and activating a downstream signalling protein.

Biased agonism

A phenomenon in which an agonist (known as a biased agonist) promotes interactions with one downstream signalling partner or cascade over another.

Inverse agonist

A molecule that reduces signalling by a receptor to a level below that observed in its basal, unliganded state.

Antagonist

A molecule that blocks the binding of other molecules to a receptor, but that on its own has little effect on signalling.

Nanobodies

Single-domain, 15 kDa fragments produced from single heavy-chain antibodies found in cameloid species (for example, llamas and alpacas). They are now also generated by in vitro methodologies such as directed evolution.

α-helical domain

A helical domain unique to heterotrimeric G proteins, inserted into a loop of the Ras-like domain. It contributes to the rate of GTP hydrolysis and also can modulate interactions between the Ras-like domain of Gα and its signalling partners.

Ras-like domain

The nucleotide-binding domain of heterotrimeric G protein α-subunits, which also contains binding sites for seven transmembrane (7TM) receptors, Gβγ subunits, and downstream effector enzymes. It contains three switch regions that are conformationally responsive to the identity of the bound nucleotide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesmer, J. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 17, 439–450 (2016). https://doi.org/10.1038/nrm.2016.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing