Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pluripotent stem cells in disease modelling and drug discovery

Key Points

  • Embryonic stem cells and induced pluripotent stem cells (PSCs) are increasingly used to model human disorders, as a substitute for limited animal models.

  • National and international initiatives are currently establishing repositories of human PSCs as models for human disorders.

  • A wide range of disorders has been successfully modelled using PSCs, including monogenic, chromosomal and complex disorders, epigenetic disorders, and disorders that appear early or late in life.

  • A number of criteria should be considered when approaching the modelling of human disease using PSCs. In this Review, we outline certain optimal or challenging characteristics affecting the selection of disorders to be modelled.

  • A disease model can be used to understand the mechanisms underlying the cellular, molecular and physiological phenotypes of the disease, as well as to develop new therapies to attenuate the disorder.

  • PSC-derived cells are currently used to screen potential drug therapies for many disorders. We provide examples of drug discovery for 25 neurological disorders.

  • Drugs identified using PSC disease models are already on their way to the clinic.

Abstract

Experimental modelling of human disorders enables the definition of the cellular and molecular mechanisms underlying diseases and the development of therapies for treating them. The availability of human pluripotent stem cells (PSCs), which are capable of self-renewal and have the potential to differentiate into virtually any cell type, can now help to overcome the limitations of animal models for certain disorders. The ability to model human diseases using cultured PSCs has revolutionized the ways in which we study monogenic, complex and epigenetic disorders, as well as early- and late-onset diseases. Several strategies are used to generate such disease models using either embryonic stem cells (ES cells) or patient-specific induced PSCs (iPSCs), creating new possibilities for the establishment of models and their use in drug screening.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for generating disease models using human pluripotent stem cells (PSCs).
Figure 2: Drug development strategies using human induced pluripotent stem cells (iPSCs).
Figure 3: Evaluation of drug screening studies using patient-derived induced pluripotent stem cell (iPSC) models for neurological disorders.

Similar content being viewed by others

References

  1. Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  2. Strachan, T., Lindsay, S. & Wilson, D. I. (eds) Molecular Genetics of Early Human Development (Academic Press, 1997).

    Google Scholar 

  3. Hamlin, R. L. & Altschuld, R. A. Extrapolation from mouse to man. Circ. Cardiovasc. Imaging 4, 2–4 (2011).

    Article  PubMed  Google Scholar 

  4. Saenger, P. Turner's syndrome. N. Engl. J. Med. 335, 1749–1754 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Chester, N., Kuo, F., Kozak, C., O'Hara, C. D. & Leder, P. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12, 3382–3393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998). This was the first report of human ES cell derivation, which laid the cornerstone for human PSC research.

    Article  CAS  PubMed  Google Scholar 

  7. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Urbach, A., Schuldiner, M. & Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 (2004). This was the first study to investigate a disease model in human ES cells.

    Article  CAS  PubMed  Google Scholar 

  9. Urbach, A. & Benvenisty, N. Studying early lethality of 45,XO (Turner's syndrome) embryos using human embryonic stem cells. PLoS ONE 4, e4175 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1, 568–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Mateizel, I. et al. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum. Reprod. 21, 503–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Biancotti, J. C. et al. Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28, 1530–1540 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This ground-breaking paper describes the successful reprogramming of mouse somatic cells to PSCs by forcing expression of specific factors.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007). References 14 and 15 both recapitulated the success of mouse somatic cell reprogramming in human fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi, T. & Yamanaka, S. A decade of reprogramming by transcription factors. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.8 (2016).

  17. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008). This report describes the first disease models in patient-derived human iPSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tachibana, M. et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228–1238 (2013). This was the first report on the derivation of human PSCs using somatic nuclear transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada, M. et al. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533–536 (2014). This study demonstrates the reprogramming of patient fibroblasts into PSCs using somatic cell nuclear transfer.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Sterneckert, J. L., Reinhardt, P. & Scholer, H. R. Investigating human disease using stem cell models. Nat. Rev. Genet. 15, 625–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Bellin, M., Marchetto, M. C., Gage, F. H. & Mummery, C. L. Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13, 713–726 (2012). This review presents the topic of disease modelling using iPSCs.

    Article  CAS  PubMed  Google Scholar 

  23. Loh, Y. H. et al. Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Soares, F. A., Sheldon, M., Rao, M., Mummery, C. & Vallier, L. International coordination of large-scale human induced pluripotent stem cell initiatives: Wellcome Trust and ISSCR workshops white paper. Stem Cell Rep. 3, 931–939 (2014). This is a comprehensive report on initiatives to model diseases using iPSCs.

    Article  Google Scholar 

  29. Paull, D. et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12, 885–892 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Briggs, J. A. et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of Down syndrome etiology. Stem Cells 31, 467–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Li, W. et al. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum. Mol. Genet. 21, 32–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. DeRosa, B. A. et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neurosci. Lett. 516, 9–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011). This study was the first to present an iPSC-based model for a psychiatric disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding, Q. et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12, 238–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burkhardt, M. F. et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren, Y. et al. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33, 68–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young, J. E. et al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16, 373–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davis, R. P. et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079–3091 (2012).

    Article  PubMed  Google Scholar 

  41. Morris, J. K., Wald, N. J. & Watt, H. C. Fetal loss in Down syndrome pregnancies. Prenat. Diagn. 19, 142–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat. Biotechnol. 30, 1244–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Studer, L., Vera, E. & Cornacchia, D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16, 591–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur. J. Epidemiol. 26, 1–58 (2011).

    Article  Google Scholar 

  47. Devine, M. J. et al. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun. 2, 440 (2011).

    Article  PubMed  CAS  Google Scholar 

  48. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mariani, J. et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 12770–12775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roessler, R. et al. Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Rep. 2, 520–533 (2014).

    Article  CAS  Google Scholar 

  51. Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cooper, O. et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. Sci. Transl. Med. 4, 141ra90 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, K. et al. Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells. Hum. Mol. Genet. 23, 6448–6457 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sagie, S. et al. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum. Mol. Genet. 23, 3629–3640 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Johannesson, B. et al. Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 15, 634–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Pick, M. et al. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27, 2686–2690 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Rugg-Gunn, P. J., Ferguson-Smith, A. C. & Pedersen, R. A. Epigenetic status of human embryonic stem cells. Nat. Genet. 37, 585–587 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Rugg-Gunn, P. J., Ferguson-Smith, A. C. & Pedersen, R. A. Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum. Mol. Genet. 16, R243–R251 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Chamberlain, S. J. et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc. Natl Acad. Sci. USA 107, 17668–17673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martins-Taylor, K. et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum. Mol. Genet. 23, 2364–2373 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Stelzer, Y., Sagi, I., Yanuka, O., Eiges, R. & Benvenisty, N. The noncoding RNA IPW regulates the imprinted DLK1–DIO3 locus in an induced pluripotent stem cell model of Prader–Willi syndrome. Nat. Genet. 46, 551–557 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, J. et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem. 285, 40303–40311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cruvinel, E. et al. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum. Mol. Genet. 23, 4674–4685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ulbright, T. M. Gonadal teratomas: a review and speculation. Adv. Anat. Pathol. 11, 10–23 (2004).

    Article  PubMed  Google Scholar 

  71. Revazova, E. S. et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Mai, Q. et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 17, 1008–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Brevini, T. A. et al. Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev. 5, 340–352 (2009).

    Article  Google Scholar 

  74. Stelzer, Y., Yanuka, O. & Benvenisty, N. Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nat. Struct. Mol. Biol. 18, 735–741 (2011). This paper describes the first analysis of an iPSC-based model for parental imprinting.

    Article  CAS  PubMed  Google Scholar 

  75. Stelzer, Y., Sagi, I. & Benvenisty, N. Involvement of parental imprinting in the antisense regulation of onco-miR-372-373. Nat. Commun. 4, 2724 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Maeder, M. L. et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S. & Eggan, K. C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Suga, H. et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480, 57–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Huch, M. & Koo, B. K. Modeling mouse and human development using organoid cultures. Development 142, 3113–3125 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruiz, S. et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 16196–16201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weissbein, U., Benvenisty, N. & Ben-David, U. Quality control: genome maintenance in pluripotent stem cells. J. Cell Biol. 204, 153–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Halevy, T. & Urbach, A. Comparing ESC and iPSC-based models for human genetic disorders. J. Clin. Med. 3, 1146–1162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010). This study was the first comparison of disease-specific models in ES cells and iPSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Halevy, T., Czech, C. & Benvenisty, N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Rep. 4, 37–46 (2015).

    Article  CAS  Google Scholar 

  92. Bar-Nur, O., Caspi, I. & Benvenisty, N. Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. J. Mol. Cell. Biol. 4, 180–183 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tulpule, A. et al. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood 115, 3453–3462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, G. H. et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat. Commun. 5, 4330 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yoshida, M. et al. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. Stem Cell Rep. 4, 561–568 (2015).

    Article  CAS  Google Scholar 

  100. Evers, M. M., Toonen, L. J. & van Roon-Mom, W. M. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 87, 90–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. McNeish, J., Gardner, J. P., Wainger, B. J., Woolf, C. J. & Eggan, K. From dish to bedside: lessons learned while translating findings from a stem cell model of disease to a clinical trial. Cell Stem Cell 17, 8–10 (2015). This is an elaborate and informative description of the rapid way this group moved from experiments on ALS patient-derived neurons differentiated from iPSCs to clinical studies in humans.

    Article  CAS  PubMed  Google Scholar 

  102. Ng, S. Y. et al. Genome-wide RNA-seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell 17, 569–584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sareen, D. et al. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS ONE 7, e39113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, J. et al. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum. Mol. Genet. 23, 3445–3455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kiskinis, E. et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14, 781–795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Soragni, E. et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76, 489–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, Y. et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13, 446–458 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Griesi-Oliveira, K. et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry 20, 1350–1365 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Guo, X. et al. Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J. Clin. Invest. 123, 5371–5388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, Y. M. et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12, 713–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wainger, B. J. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7, 1–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jang, J. et al. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann. Neurol. 70, 402–409 (2011).

    Article  PubMed  Google Scholar 

  115. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).

    Article  PubMed  CAS  Google Scholar 

  116. Hossini, A. M. et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 16, 84 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Liu, Q. et al. Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol. 71, 1481–1489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yagi, T. et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum. Mol. Genet. 20, 4530–4539 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Israel, M. A. et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kondo, T. et al. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, P. et al. SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat. Commun. 4, 1824 (2013).

    Article  PubMed  CAS  Google Scholar 

  122. Germain, N. D. et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol. Autism 5, 44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Madison, J. M. et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry 20, 703–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, C. et al. Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat. Commun. 5, 4430 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Hibaoui, Y. et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 6, 259–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Chang, C. Y. et al. N-butylidenephthalide attenuates Alzheimer's disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons. Sci. Rep. 5, 8744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kaufmann, M. et al. High-throughput screening using iPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X syndrome. J. Biomol. Screen. 20, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Igoillo-Esteve, M. et al. Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Hum. Mol. Genet. 24, 2274–2286 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Son, M. Y. et al. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation. J. Pathol. 237, 98–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Denton, K. R. et al. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells 32, 414–423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leung, A. et al. Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. Stem Cell Rep. 1, 451–463 (2013).

    Article  CAS  Google Scholar 

  132. Lu, X. H. et al. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Sci. Transl. Med. 6, 268ra178 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Charbord, J. et al. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells 31, 1816–1828 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Koch, P. et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 480, 543–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Lojewski, X. et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 23, 2005–2022 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Maetzel, D. et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick type C patient-specific iPS cells. Stem Cell Rep. 2, 866–880 (2014).

    Article  CAS  Google Scholar 

  137. Soga, M. et al. HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. Stem Cells 33, 1075–1088 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, H. et al. Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat. Commun. 5, 5514 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, D. et al. Niemann-Pick disease type C: induced pluripotent stem cell-derived neuronal cells for modeling neural disease and evaluating drug efficacy. J. Biomol. Screen. 19, 1164–1173 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ryan, S. D. et al. Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155, 1351–1364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shcheglovitov, A. et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503, 267–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Williams, E. C. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum. Mol. Genet. 23, 2968–2980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paulsen, B. S., Cardoso, S. C., Stelling, M. P., Cadilhe, D. V. & Rehen, S. K. Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr. Res. 154, 30–35 (2014).

    Article  Google Scholar 

  146. Paulsen, B. S. et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 21, 1547–1559 (2012).

    Article  Google Scholar 

  147. Nihei, Y. et al. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J. Biol. Chem. 288, 8043–8052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu, S. et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc. Natl Acad. Sci. USA 111, E5292–E5301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Eran Meshorer for his assistance in composing the glossary terms. I.S. is supported by the Adams Fellowships Program for Doctoral Students, and N.B. is the Herbert Cohn Chair in Cancer Research. This work was partially supported by the Israel Science Foundation (grant no. 269/12), by the Rosetrees Trust and by the Azrieli Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nissim Benvenisty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

CIRM

Coriell Biorepository

ECACC

HiPSCi

StemBANCC

New York Stem Cell Foundataion (NYSCF)

Glossary

Aneuploidy

The occurrence of an aberrant number of chromosomes within a cell, including both chromosome additions and deletions.

Primary cell lines

Cultured cells derived directly from source tissues. Primary cells usually have a normal karyotype and a limited replicative potential unless immortalized.

Self-renewal

The ability of a cell to give rise to indefinite number of cells of the same type.

Monogenic disorders

Genetic diseases arising from a mutation in a single gene. Examples include cystic fibrosis (mutations in the CFTR gene) and Lesch–Nyhan disease (mutations in the HPRT1 gene).

Complex disorders

Genetic diseases arising from alterations in several genes or that have an unclear genetic basis. Examples include forms of Alzheimer disease and diabetes.

Early-onset

Describes a disease in which phenotypes appear as early as fetal development or early childhood. Examples include Patau syndrome and fragile X syndrome.

Late-onset

Describes a disease in which phenotypes appear in adulthood. Examples include Alzheimer disease and Parkinson disease.

Chromosomal disorders

Diseases arising from either the loss or addition of chromosomes or subchromosomal regions. Examples include Down syndrome (trisomy of chromosome 21) and Turner syndrome (monosomy of chromosome X).

Pre-implantation genetic diagnosis

(PGD). Genetic profiling mainly of mutations within disease-causing genes in pre-implantation embryos produced by IVF. PGD is used to identify diseased embryos of parents with a predisposition for a specific disease.

Pre-implantation genetic screening

(PGS). Screening for chromosomal aberrations in pre-implantation embryos produced by IVF. PGS is used to identify embryos with chromosomal disorders, most commonly in cases of advanced maternal age or in women with multiple previous miscarriages.

Non-integrative reprogramming methods

Techniques that do not involve the insertion and persistence of ectopic reprogramming-inducing DNA sequences within the genome.

Penetrance

The proportion of individuals with a specific genotype who express it at the phenotypic level.

Haplotypes

Groups of adjacent genes and/or alleles that are usually inherited as clusters.

Parental genomic imprinting

A process by which parent-specific epigenetic modifications occur differentially in maternally and paternally inherited alleles.

Imprinting disorders

Disorders that originate from the aberrant regulation of imprinted genes. Examples include Prader–Willi syndrome and Angelman syndrome.

Parthenogenetic development

The development of an embryo from an unfertilized oocyte.

Organoids

Miniature organ-like structures generated in culture. Organoids vary in their complexity, but they are usually composed of several cell types and recapitulate three-dimensional organ development.

High-throughput screening

(HTS). A drug discovery strategy involving the analysis of a large array of compounds, which are chosen in an unbiased fashion. The effects of each compound on an aberrant phenotype are evaluated simultaneously.

Candidate drug approach

A drug discovery strategy involving compounds that were previously shown to affect a specific pathway or phenotype and that are tested as potential therapies for a specific disease on the basis of this information.

Clinical trials

Studies that evaluate potential treatments on human subjects. These trials are tightly regulated, have strict requirements and are composed of typical phases, evaluating the safety and efficacy of the treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17, 170–182 (2016). https://doi.org/10.1038/nrm.2015.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.27

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research