Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microfluidics: reframing biological enquiry

Key Points

  • New biological understanding is emerging from the physical and chemical regimes that are found in microfluidic systems. The small volumes (sub-microlitre), predictable flows (low Reynolds number) and in vivo length scale and timescale matching of microfluidic devices underpin notable recent advances in molecular cell biology research.

  • Microfluidic tools combined with advanced molecular, imaging and bioinformatics techniques form a flexible 'toolbox' that life scientists are actively adopting and adapting to facilitate new lines of biological enquiry.

  • Microfluidic single-cell immunoassays can profile the secretomes and proteomes of thousands of cells in parallel. This has been used, for example, to study the population dynamics of glioma cells in terms of the effects of drug treatment on the PI3K pathway.

  • Emerging platforms for biophysical cytometry — which measure the mechanical properties of cells — offer a label-free cell screening platform for induced pluripotency and cancer diagnostics at a throughput rate that compares with that of fluorescence-based flow cytometry.

  • Water-in-oil droplet emulsions are being used to create discrete reaction vessels for high-throughput screening and directed evolution. Recent examples of the use of this strategy include antibody selection from hundreds of thousands of single hybridoma cells and high-resolution optimization of drug efficacy over a near-continuum of drug concentrations.

  • Precise temporal and spatial flow control in microfluidics make it a powerful platform for studying dynamic biological processes that occur over short timescales. Studies elucidating the dynamics of protein folding, signal transduction and the kinetics of transcription factor binding demonstrate the transient biological phenomena that have been made accessible for research using microfluidic tools.

  • Microfluidics allows researchers to deconstruct complex biological relationships by representing biology in tailored microenvironmental contexts, which can be perturbed in a controlled manner and closely monitored using, for example, real-time high-resolution imaging. In a prominent example, organ-on-a-chip platforms seek to recapitulate the functions of organs to create an in vitro model system for drug screening.

Abstract

The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools — in conjunction with advanced imaging, bioinformatics and molecular biology approaches — will transform biology into a precision science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A flow diagram highlighting crucial developments in microfluidics, from fabrication approaches and functional developments in the evolution of the technology platform to some of the applications discussed in this Review.
Figure 2: Physics at the microscale.
Figure 3: Dynamic process analysis.
Figure 4: High-throughput microfluidics.
Figure 5: Biological length scales.

Similar content being viewed by others

References

  1. Lanier, L. L. Just the FACS. J. Immunol. 193, 2043–2044 (2014).

    CAS  PubMed  Google Scholar 

  2. Dovichi, N. J. & Zhang, J. Z. How capillary electrophoresis sequenced the human genome. Angew. Chem. Int. Ed. Engl. 39, 4463–4468 (2000).

    CAS  PubMed  Google Scholar 

  3. Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    CAS  PubMed  Google Scholar 

  4. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA 109, 419–424 (2012). Multiplexed single-cell resolution immunoassays were used to directly correlate protein phosphorylation in a signalling pathway within a single cell, for thousands of cells in parallel.

    CAS  PubMed  Google Scholar 

  6. El Debs, B., Utharala, R., Balyasnikova, I. V., Griffiths, A. D. & Merten, C. A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl Acad. Sci. USA 109, 11570–11575 (2012). The functional screening of secreted monoclonal antibodies from hundreds of thousands of single hybridoma cells expedites the process and reduces the cost of production of high quality monoclonal antibodies.

    CAS  PubMed  Google Scholar 

  7. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    CAS  PubMed  Google Scholar 

  8. Shapiro, H. M. Practical Flow Cytometry (John Wiley & Sons, 2005).

    Google Scholar 

  9. Takayama, S. et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl Acad. Sci. USA 96, 5545–5548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudani, J. S., Gossett, D. R., Tse, H. T. & Di Carlo, D. Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 3728–3734 (2013).

    CAS  PubMed  Google Scholar 

  11. Tse, H. T. et al. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl Med. 5, 212ra163 (2013). The high-throughput cell deformability assay was developed for rapid and label-free diagnostic screening to accurately identify the malignant pleural effusions phenotype.

    PubMed  Google Scholar 

  12. Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA 109, 7630–7635 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  14. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Google Scholar 

  15. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). The biomimetic lung-on-a-chip system showed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles — establishing the platform as a potential low-cost alternative to animal and clinical studies for drug screening and toxicology applications.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Google Scholar 

  17. Geertz, M., Shore, D. & Maerkl, S. J. Massively parallel measurements of molecular interaction kinetics on a microfluidic platform. Proc. Natl Acad. Sci. USA 109, 16540–16545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fordyce, P. M. et al. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol. 28, 970–975 (2010). In a single experiment, the binding affinities of 28 yeast transcription factors were measured against all possible 8-bp DNA sequences (a total of 65,536 sequences).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jovic, A., Wade, S. M., Neubig, R. R., Linderman, J. J. & Takayama, S. Microfluidic interrogation and mathematical modeling of multi-regime calcium signaling dynamics. Integr. Biol. 5, 932–939 (2013).

    CAS  Google Scholar 

  20. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rafelski, S. M. et al. Mitochondrial network size scaling in budding yeast. Science 338, 822–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, Z. et al. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell 11, 599–606 (2012).

    CAS  PubMed  Google Scholar 

  23. Sun, J. et al. A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res. 70, 6128–6138 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, M. S., Kwon, S., Kim, T., Lee, E. S. & Park, J. K. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry. Biomaterials 32, 1396–1403 (2011).

    CAS  PubMed  Google Scholar 

  25. Ciftlik, A. T., Lehr, H. A. & Gijs, M. A. Microfluidic processor allows rapid HER2 immunohistochemistry of breast carcinomas and significantly reduces ambiguous (2+) read-outs. Proc. Natl Acad. Sci. USA 110, 5363–5368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, J. et al. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu. Rev. Anal. Chem. 7, 275–295 (2014).

    CAS  Google Scholar 

  27. Li, J. J., Bickel, P. J. & Biggin, M. D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in proliferating animal cells. Science 325, 167–171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, L. et al. Human NK cells licensed by killer Ig receptor genes have an altered cytokine program that modifies CD4+ T cell function. J. Immunol. 193, 940–949 (2014).

    CAS  PubMed  Google Scholar 

  30. Gerver, R. E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).

    CAS  PubMed  Google Scholar 

  31. Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13, 524–529 (2014).

    CAS  PubMed  Google Scholar 

  32. Ma, C. et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17, 738–743 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin, Y. S. et al. Protein signaling networks from single cell fluctuations and information theory profiling. Biophys. J. 100, 2378–2386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Konry, T., Dominguez-Villar, M., Baecher-Allan, C., Hafler, D. A. & Yarmush, M. L. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens. Bioelectron. 26, 2707–2710 (2011).

    CAS  PubMed  Google Scholar 

  35. Hathout, Y. Approaches to the study of the cell secretome. Expert Rev. Proteomics 4, 239–248 (2007).

    CAS  PubMed  Google Scholar 

  36. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  37. Saper, C. B. An open letter to our readers on the use of antibodies. J. Comp. Neurol. 493, 477–478 (2005).

    PubMed  Google Scholar 

  38. Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, C. C., Lin, J. M., Xu, Z., Kumar, S. & Herr, A. E. Single-cell Western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal. Chem. 86, 10429–10436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. [No authors listed.] Method of the Year 2013. Nat. Methods 11, 1 (2014).

  41. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014).

    CAS  PubMed  Google Scholar 

  42. Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11, 41–46 (2014).

    CAS  PubMed  Google Scholar 

  43. Streets, A. M. et al. Microfluidic single-cell whole-transcriptome sequencing. Proc. Natl Acad. Sci. USA 111, 7048–7053 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shuga, J. et al. Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR. Nucleic Acids Res. 41, 1–11 (2013).

    Google Scholar 

  47. Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3, 1702–1708 (2007).

    CAS  PubMed  Google Scholar 

  48. Di Carlo, D., Wu, L. Y. & Lee, L. P. Dynamic single cell culture array. Lab Chip 6, 1445–1449 (2006).

    CAS  PubMed  Google Scholar 

  49. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. White, A. K. et al. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl Acad. Sci. USA 108, 13999–14004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. White, A. K., Heyries, K. A., Doolin, C., Vaninsberghe, M. & Hansen, C. L. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal. Chem. 85, 7182–7190 (2013).

    CAS  PubMed  Google Scholar 

  52. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    CAS  PubMed  Google Scholar 

  53. Islam, S. et al. Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat. Protoc. 7, 813–828 (2012).

    CAS  PubMed  Google Scholar 

  54. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E. & Truskey, G. A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553 (2001).

    CAS  PubMed  Google Scholar 

  57. Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8, 1062–1070 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Adamo, A. et al. Microfluidics-based assessment of cell deformability. Anal. Chem. 84, 6438–6443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, Q. et al. Microfluidic analysis of red blood cell deformability. J. Biomech. 47, 1767–1776 (2014).

    PubMed  Google Scholar 

  60. Zhang, W. et al. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc. Natl Acad. Sci. USA 109, 18707–18712 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

    CAS  PubMed  Google Scholar 

  62. Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9, 82–88 (2010).

    CAS  PubMed  Google Scholar 

  63. Huberts, D. H. et al. Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast. Nat. Protoc. 8, 1019–1027 (2013).

    CAS  PubMed  Google Scholar 

  64. Rowat, A. C., Bird, J. C., Agresti, J. J., Rando, O. J. & Weitz, D. A. Tracking lineages of single cells in lines using a microfluidic device. Proc. Natl Acad. Sci. USA 106, 18149–18154 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S. S., Vizcarra, I. A., Huberts, D. H., Lee, L. P. & Heinemann, M. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc. Natl Acad. Sci. USA 109, 4916–4920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sivagnanam, V. & Gijs, M. A. M. Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem. Rev. 113, 3214–3247 (2013).

    CAS  PubMed  Google Scholar 

  67. Busch, W. et al. A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat. Methods 9, 1101–1106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Choudhury, D. et al. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab Chip 12, 892–900 (2012).

    CAS  PubMed  Google Scholar 

  69. Akagi, J. et al. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 85, 537–547 (2014).

    PubMed  Google Scholar 

  70. Akagi, J. et al. Opensource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests. Curr. Protoc. Cytom. 67, 9.44.1–9.44.16 (2014).

    Google Scholar 

  71. Zheng, C. et al. Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos. Chem. Commun. 50, 981–984 (2014).

    CAS  Google Scholar 

  72. Kirby, B. J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, 2010).

    Google Scholar 

  73. Hansen, A. S. & O'Shea, E. K. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Mol. Syst. Biol. 9, 1–14 (2013).

    Google Scholar 

  74. Morel, M. et al. Amplification and temporal filtering during gradient sensing by nerve growth cones probed with a microfluidic assay. Biophys. J. 103, 1648–1656 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McClean, M. N., Hersen, P. & Ramanathan, S. In vivo measurement of signaling cascade dynamics. Cell Cycle 8, 373–376 (2009).

    CAS  PubMed  Google Scholar 

  76. Amir, A., Meshner, S., Beatus, T. & Stavans, J. Damped oscillations in the adaptive response of the iron homeostasis network of E. coli. Mol. Microbiol. 76, 428–436 (2010).

    CAS  PubMed  Google Scholar 

  77. Maerkl, S. J. & Quake, S. R. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237 (2007).

    CAS  PubMed  Google Scholar 

  78. Hens, K. et al. Automated protein-DNA interaction screening of Drosophila regulatory elements. Nat. Methods 8, 1065–1070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hernday, A. D. et al. Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol. Microbiol. 90, 22–35 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gubelmann, C. et al. A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol. Syst. Biol. 9, 1–18 (2013).

    Google Scholar 

  81. Fordyce, P. M. et al. Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses. Proc. Natl Acad. Sci. USA 109, E3084–E3093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin, L. et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat. Methods 9, 1192–1194 (2012).

    CAS  PubMed  Google Scholar 

  83. Neveu, G. et al. Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly. PLos Pathog. 8, e1002845 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chiang, Y.-Y. & West, J. Ultrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling. Lab Chip 13, 1031–1034 (2013).

    CAS  PubMed  Google Scholar 

  85. Hughes, A. J., Tentori, A. M. & Herr, A. E. Bistable isoelectric point photoswitching in green fluorescent proteins observed by dynamic immunoprobed isoelectric focusing. J. Am. Chem. Soc. 134, 17582–17591 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fazelinia, H., Xu, M., Cheng, H. & Roder, H. Ultrafast hydrogen exchange reveals specific structural events during the initial stages of folding of cytochrome c. J. Am. Chem. Soc. 136, 733–740 (2014). Ultra-fast microfluidic mixing for hydrogen–deuterium exchange enabled researchers to determine that decreased chain dimensions during the early stages of cytochrome c folding are due to specific α-helix interactions and not a general hydrophobic collapse of the protein.

    CAS  PubMed  Google Scholar 

  87. Simpson, P. C. et al. High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc. Natl Acad. Sci. USA 95, 2256–2261 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Edwards, B. S., Oprea, T., Prossnitz, E. R. & Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 8, 392–398 (2004).

    CAS  PubMed  Google Scholar 

  89. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 45, 7336–7356 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    CAS  PubMed  Google Scholar 

  91. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364 (2003).

    CAS  Google Scholar 

  92. Su, X. et al. Microfluidic cell culture and its application in high-throughput drug screening: cardiotoxicity assay for hERG channels. J. Biomol. Screen. 16, 101–111 (2011).

    CAS  PubMed  Google Scholar 

  93. Rauch, J. N., Nie, J., Buchholz, T. J., Gestwicki, J. E. & Kennedy, R. T. Development of a capillary electrophoresis platform for identifying inhibitors of protein–protein interactions. Anal. Chem. 85, 9824–9831 (2013).

    CAS  PubMed  Google Scholar 

  94. Desai, B. et al. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. J. Med. Chem. 56, 3033–3047 (2013).

    CAS  PubMed  Google Scholar 

  95. Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99, 16531–16536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    CAS  PubMed  Google Scholar 

  97. Schneider, T., Kreutz, J. & Chiu, D. T. The potential impact of droplet microfluidics in biology. Anal. Chem. 85, 3476–3482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Granieri, L., Baret, J. C., Griffiths, A. D. & Merten, C. A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chem. Biol. 17, 229–235 (2010).

    CAS  PubMed  Google Scholar 

  99. Wang, B. L. et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol. 32, 473–478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, O. J. et al. High-resolution dose-response screening using droplet-based microfluidics. Proc. Natl Acad. Sci. USA 109, 378–383 (2012).

    CAS  PubMed  Google Scholar 

  101. Klopfenstein, S. R. et al. 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors. Bioorg. Med. Chem. Lett. 16, 1574–1578 (2006).

    CAS  PubMed  Google Scholar 

  102. Knowles, T. P. et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc. Natl Acad. Sci. USA 108, 14746–14751 (2011). This study of amyloid nucleation showed that cellular compartmentalization probably offers protection from uncontrolled fibril aggregation.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hsiao, A. Y. et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30, 3020–3027 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuo, C. T. et al. Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics. Biomaterials 35, 1562–1571 (2014).

    CAS  PubMed  Google Scholar 

  105. Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012). An in vitro microfluidic model of a tumour–vascular interface yielded dynamic and high-resolution images of the progression of cancer intravasation.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).

    CAS  PubMed  Google Scholar 

  107. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nguyen, D. H. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sung, J. H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201–1212 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Martin, J. G. et al. Toward an artificial Golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip. J. Am. Chem. Soc. 131, 11041–11048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ho, C. T. et al. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip 13, 3578–3587 (2013).

    CAS  PubMed  Google Scholar 

  114. Ahmad, A. A. et al. Optimization of 3D organotypic primary colonic cultures for organ-on-chip applications. J. Biol. Eng. 8, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Booth, R. & Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12, 1784–1792 (2012).

    CAS  PubMed  Google Scholar 

  116. Wilson, K., Das, M., Wahl, K. J., Colton, R. J. & Hickman, J. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE 5, e11042 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Karzbrun, E., Tayar, A. M., Noireaux, V. & Bar-Ziv, R. H. Synthetic biology. Programmable on-chip DNA compartments as artificial cells. Science 345, 829–832 (2014).

    CAS  PubMed  Google Scholar 

  118. Esch, M. B., King, T. L. & Shuler, M. L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55–72 (2011).

    CAS  PubMed  Google Scholar 

  119. Sung, J. H. et al. Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 239, 1225–1239 (2014).

    Google Scholar 

  120. Shamloo, A. et al. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integr. Biol. 5, 1076–1085 (2013).

    CAS  Google Scholar 

  121. Fuller, D. et al. External and internal constraints on eukaryotic chemotaxis. Proc. Natl Acad. Sci. USA 107, 9656–9659 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Justin, R. T. & Engler, A. J. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011).

    Google Scholar 

  123. Prentice-Mott, H. V. et al. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc. Natl Acad. Sci. USA 110, 21006–21011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu, H. & Heilshorn, S. C. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 9, 585–595 (2013).

    CAS  PubMed  Google Scholar 

  125. Haessler, U., Pisano, M., Wu, M. & Swartz, M. A. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc. Natl Acad. Sci. USA 108, 5614–5619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Giridharan, G. A. et al. Microfluidic cardiac cell culture model (muCCCM). Anal. Chem. 82, 7581–7587 (2010).

    CAS  PubMed  Google Scholar 

  127. Neeves, K. B., Illing, D. A. & Diamond, S. L. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys. J. 98, 1344–1352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012).

    CAS  PubMed  Google Scholar 

  129. Kuwano, Y., Spelten, O., Zhang, H., Ley, K. & Zarbock, A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood 116, 617–624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Christophis, C. et al. Shear stress regulates adhesion and rolling of CD44+ leukemic and hematopoietic progenitor cells on hyaluronan. Biophys. J. 101, 585–593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vedel, S., Tay, S., Johnston, D. M., Bruus, H. & Quake, S. R. Migration of cells in a social context. Proc. Natl Acad. Sci. USA 110, 129–134 (2013).

    CAS  PubMed  Google Scholar 

  132. Kravchenko-Balasha, N., Wang, J., Remacle, F., Levine, R. D. & Heath, J. R. Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc. Natl Acad. Sci. USA 111, 6521–6526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sen, A. et al. Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution. Proc. Natl Acad. Sci. USA 109, 20667–20672 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Uckun, F. M. et al. Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros. Proc. Natl Acad. Sci. USA 109, 18072–18077 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Berthier, E., Young, E. W. K. & Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    CAS  PubMed  Google Scholar 

  136. Hjerten, S. Free zone electrophoresis. Chromatogr. Rev. 9, 122–219 (1967).

    CAS  PubMed  Google Scholar 

  137. Fulwyler, M. J. Electronic separation of biological cells by volume. Science 150, 910–911 (1965).

    CAS  PubMed  Google Scholar 

  138. Coulter, W. Means for counting particles suspended in a fluid. US patent US2656508A (1953).

  139. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    CAS  Google Scholar 

  140. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E. & Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials 20, 2363–2376 (1999).

    CAS  PubMed  Google Scholar 

  141. Harrison, D. J., Manz, A., Fan, Z. H., Ludi, H. & Widmer, H. M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932 (1992).

    CAS  Google Scholar 

  142. Emrich, C. A., Tian, H., Medintz, I. L. & Mathies, R. A. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal. Chem. 74, 5076–5083 (2002).

    CAS  PubMed  Google Scholar 

  143. Delamarche, E., Bernard, A., Schmid, H., Michel, B. & Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781 (1997).

    CAS  PubMed  Google Scholar 

  144. Kazuo, H. & Ryutaro, M. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J. Micromech. Microeng. 10, 415 (2000).

    Google Scholar 

  145. Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038–3046 (2009).

    CAS  PubMed  Google Scholar 

  146. Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.A.D. was supported by a US National Science Foundation Graduate Research Fellowship. A.M.T. was supported by a US Department of Homeland Security ORISE Fellowship, a Siebel Scholarship and a California Cancer Coordinating Committee Fellowship. This work was also supported by a US National Institutes of Health (NIH) New Innovator Award (DP2OD007294 to A.E.H.) and a UC Berkeley Bakar Fellowship (to A.E.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Herr.

Ethics declarations

Competing interests

The authors declare competing financial interests. T.A.D., A.M.T. and A.E.H. are co-inventors on patents related to microfluidic analysis, and A.E.H. has equity interest in a company commercializing a microfluidic analysis tool.

PowerPoint slides

Glossary

Laminar flow

A flow regime that is observed when the Reynolds number is less than 2,000 in pipe flow; in such cases, fluid moves in parallel stream lines or 'lamina'.

Reynolds number

(Re). A dimensionless number that is defined as the ratio of inertial forces to viscous forces in a system. The value of Re increases with flow velocity and the characteristic length scale (of, for example, the channel diameter) and decreases with viscosity. Microfluidic flows typically have a low Re (<10), which results in laminar flow.

Laminar flow patterning

Laminar patterning uses the slow mixing between multiple microfluidic flows with low Reynolds numbers for spatial patterning or to deliver soluble agents within the channel. The shape and location of patterning are controlled by modulating the relative flow rates of each fluid in the channel.

Multiplexing

The measurement of multiple signals in parallel; that is, carrying out several assays simultaneously.

Barcoding

The use of recognizable labels (tags) to track individual samples throughout an assay or to track the output of distinct assays from a single sample for multiplexing. Examples of such tags include DNA sequences, spectrally-encoded fluorescent beads and spatial patterning of capture reagents.

Strouhal number

A dimensionless number that is defined as the ratio of inertial forces resulting from changes in velocity in the flow field to the inertial forces resulting from unsteady flow oscillation. The Strouhal number increases with flow velocity and decreases with the characteristic length scale of the channel and with oscillation frequency.

Dissociation constant

(Kd). An equilibrium constant that describes the susceptibility of a complex to dissociate into its components. It is often used to describe how strongly molecules interact.

Directed evolution

A method for the engineering of new biomolecules using the principle of natural selection. Typically, several rounds of selection are used.

Taylor–Aris dispersion

A phenomenon that can enhance effective diffusion when there is a non-uniform flow velocity across a channel, as is typically the case in pressure-driven microfluidic flows.

Intravasation

The invasion of cancer cells through the basement membrane into a blood or lymphatic vessel, which is a crucial step in cancer metastasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncombe, T., Tentori, A. & Herr, A. Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16, 554–567 (2015). https://doi.org/10.1038/nrm4041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing