Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p53 in survival, death and metabolic health: a lifeguard with a licence to kill

Key Points

  • Activation of the transcription factor p53 in response to different types of cellular stress can lead to cell survival as well as cell elimination.

  • Novel insights into the functions of p53 reveal that diverse mechanisms influence cell fate decisions upon p53 activation.

  • p53 sustains metabolic health and homeostasis by allowing cells to adapt to transient metabolic and nutrient stress through the regulation of signalling pathways and by modulating transcription or the activity of metabolic enzymes.

  • Basal levels of reactive oxygen species (ROS) are important for normal cellular processes, whereas excessive levels of ROS are deleterious. p53 promotes antioxidant activity under normal conditions to protect cells from ROS and promotes pro-oxidant activity under severe oxidative stress to eliminate damaged cells by inducing ROS.

  • The survival functions of p53 may help to prevent tumour development, but persistence of these activities during malignant development may help to support cancer progression.

  • To use manipulations of p53 activity in a therapeutic setting, whether for tumour suppression or in other pathologies, the context-dependent variability in the outcome of p53 activation needs to be carefully considered.

Abstract

The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53 regulates metabolism by restricting glycolysis and enhancing oxidative phosphorylation.
Figure 2: p53 regulates cellular redox homeostasis.
Figure 3: p53 as an integrator of cellular stress.

Similar content being viewed by others

References

  1. Sullivan, K. D., Gallant-Behm, C. L., Henry, R. E., Fraikin, J. L. & Espinosa, J. M. The p53 circuit board. Biochim. Biophys. Acta 1825, 229–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hermeking, H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carvajal, L. A. & Manfredi, J. J. Another fork in the road — life or death decisions by the tumour suppressor p53. EMBO Rep. 14, 414–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackson, J. G., Post, S. M. & Lozano, G. Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J. Pathol. 223, 127–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Hollstein, M. & Hainaut, P. Massively regulated genes: the example of TP53. J. Pathol. 220, 164–173 (2010).

    CAS  PubMed  Google Scholar 

  8. Marcel, V., Fernandes, K., Terrier, O., Lane, D. P. & Bourdon, J. C. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 21, 1377–1387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu, B. & Zhu, W. G. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672–684 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kruse, J. P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hock, A. K. & Vousden, K. H. The role of ubiquitin modification in the regulation of p53. Biochim. Biophys. Acta 1843, 137–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Van Nostrand, J. L. et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature 514, 228–232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, J. Y. et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 105, 705–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aloni-Grinstein, R. Shetzer, Y., Kaufman, T. & Rotter, V. p53: the barrier to cancer stem cell formation. FEBS Lett. 588, 2580–2589 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Muller, P. A., Vousden, K. H. & Norman, J. C. p53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 192, 209–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teodoro, J. G., Evans, S. K. & Green, M. R. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J. Mol. Med. (Berl.) 85, 1175–1186 (2007).

    Article  CAS  Google Scholar 

  21. Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bar, J., Moskovits, N. & Oren, M. Involvement of stromal p53 in tumor–stroma interactions. Semin. Cell Dev. Biol. 21, 47–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013). This study demonstrates a role for p53 in the tumour microenvironment. p53-induced senescence in hepatic stellate cells is shown to suppress tumour progression by promoting the secretion of factors that stimulate antitumour functions in macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl Acad. Sci. USA 89, 4495–4499 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Chipuk, J. E. & Green, D. R. Dissecting p53-dependent apoptosis. Cell Death Differ. 13, 994–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, J. & Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Vaseva, A. V. & Moll, U. M. The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Follis, A. V. et al. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat. Struct. Mol. Biol. 21, 535–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Follis, A. V. et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat. Chem. Biol. 9, 163–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, J. & Zhang, L. The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun. 331, 851–858 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Long, J. S. et al. Extracellular adenosine sensing — a metabolic cell death priming mechanism downstream of p53. Mol. Cell 50, 394–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Tu, H. C. et al. The p53–cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc. Natl Acad. Sci. USA 106, 1093–1098 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montero, J., Dutta, C., van Bodegom, D., Weinstock, D. & Letai, A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 20, 1465–1474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233–241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomasova, D. et al. Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014040345 (2014).

  39. Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013). A detailed genome-wide analysis in primary cells identified genes that were both bound to and transcriptionally regulated by p53 in response to DNA damage. Interestingly, a large number of these are autophagy genes, with p53-induced autophagy contributing to both apoptosis and transformation suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat. Rev. Cancer 8, 450–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, J. M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Almog, N. & Rotter, V. Involvement of p53 in cell differentiation and development. Biochim. Biophys. Acta 1333, F1–F27 (1997).

    CAS  PubMed  Google Scholar 

  47. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460, 1132–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tschaharganeh, D. F. et al. p53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158, 579–592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zwang, Y. et al. Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals. Mol. Cell 42, 524–535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nat. Rev. Mol. Cell Biol. 6, 44–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Vitre, B. D. & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Carcer, G. & Malumbres, M. A centrosomal route for cancer genome instability. Nat. Cell Biol. 16, 504–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Maddocks, O. D. & Vousden, K. H. Metabolic regulation by p53. J. Mol. Med. (Berl.) 89, 237–245 (2011).

    Article  CAS  Google Scholar 

  57. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, C. W. et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 72, 4394–4404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He, G. et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol. Cell. Biol. 34, 148–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, S. M., Kim, J. H., Cho, E. J. & Youn, H. D. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ. 16, 738–748 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, T. H., Leslie, P. & Zhang, Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 5, 860–871 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Liu, Y. et al. Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc. Natl Acad. Sci. USA 111, E2414–E2422 (2014). Using mice engineered to express MDM2 that is deficient in binding to ribosomal proteins, this study shows that the ribosomal protein–MDM2–p53 signalling pathway senses nutrient deprivation and is crucial for maintaining lipid homeostasis in the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoeferlin, L. A., Fekry, B., Ogretmen, B., Krupenko, S. A. & Krupenko, N. I. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J. Biol. Chem. 288, 12880–12890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Kawauchi, K. Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK–NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 10, 611–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Bensaad, K., Cheung, E. C. & Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28, 3015–3026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  70. Kim, H. R., Roe, J. S., Lee, J. E., Cho, E. J. & Youn, H. D. p53 regulates glucose metabolism by miR-34a. Biochem. Biophys. Res. Commun. 437, 225–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Contractor, T. & Harris, C. R. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 72, 560–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl Acad. Sci. USA 108, 16259–16264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455–7460 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 7461–7466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Polster, B. M. AIF, reactive oxygen species, and neurodegeneration: a “complex” problem. Neurochem Int. 62, 695–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Stambolsky, P. et al. Regulation of AIF expression by p53. Cell Death Differ. 13, 2140–2149 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, D. B., Kinoshita, C., Kinoshita, Y. & Morrison, R. S. p53 and mitochondrial function in neurons. Biochim. Biophys. Acta 1842, 1186–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lebedeva, M. A., Eaton, J. S. & Shadel, G. S. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim. Biophys. Acta 1787, 328–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saleem, A., Carter, H. N. & Hood, D. A. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise. Am. J. Physiol. Cell Physiol. 306, C241–C249 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Berkers, C. R., Maddocks, O. D., Cheung, E. C., Mor, I. & Vousden, K. H. Metabolic regulation by p53 family members. Cell Metab. 18, 617–633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruiz-Lozano, P. et al. p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ. 10, 295–306 (1999).

    CAS  PubMed  Google Scholar 

  83. Mathupala, S. P., Heese, C. & Pedersen, P. L. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem. 272, 22776–22780 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldstein, I. et al. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 1, 9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang, S. J. et al. p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 12, 753–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, P. et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl Acad. Sci. USA 111, 10684–10689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013). This study describes a role for p53 in supporting metabolic adaptation to serine starvation by transiently activating p53, p21 and cell cycle arrest. This enables depleted serine stores to be channelled to GSH synthesis, sustaining cellular redox balance and cell survival. The effectiveness of a serine-depleted diet in limiting cancer growth in vivo is also demonstrated.

    Article  CAS  PubMed  Google Scholar 

  90. Reid, M. A. et al. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol. Cell 50, 200–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014). The authors apply a novel and elegant technique, which uses liquid chromatography and mass spectrometry to track the source of NADPH production. They reveal an unexpected importance of one-carbon metabolism in cellular NADPH production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sanchez-Macedo, N. et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ. 20, 659–668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44, 491–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choong, M. L., Yang, H., Lee, M. A. & Lane, D. P. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8, 2810–2818 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Choudhury, S., Kolukula, V. K., Preet, A., Albanese, C. & Avantaggiati, M. L. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle 12, 1022–1029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Gao, W., Shen, Z., Shang, L. & Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 18, 1598–1607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kenzelmann Broz, D. & Attardi, L. D. TRP53 activates a global autophagy program to promote tumor suppression. Autophagy 9, 1440–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).

  106. Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013). This paper emphasizes the importance of determining the genetic make-up of a tumour before deciding on a treatment. Using genetically engineered mice, the authors show that the p53 status of pancreatic tumours with activated oncogenic KRAS determines whether the inhibition of autophagy prevents or promotes tumour progression.

    Article  CAS  PubMed  Google Scholar 

  107. Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1–AKT–mTOR pathways. Cancer Res. 67, 3043–3053 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Tasdemir, E. et al. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7, 3006–3011 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Morselli, E. et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10, 2763–2769 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Livesey, K. M. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maillet, A. & Pervaiz, S. Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid. Redox Signal 16, 1285–1294 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Xie, J. M. et al. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res. 74, 5127–5138 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Li, M. et al. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J. Neurosci. 34, 7458–7471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cheung, E. C., Ludwig, R. L. & Vousden, K. H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl Acad. Sci. USA 109, 20491–20496 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Reilly, P. T. & Mak, T. W. Molecular pathways: tumor cells co-opt the brain-specific metabolism gene CPT1C to promote survival. Clin. Cancer Res. 18, 5850–5855 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Toledano, M. B. The guardian recruits cops: the p53–p21 axis delegates prosurvival duties to the Keap1–Nrf2 stress pathway. Mol. Cell 34, 637–639 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Drane, P., Bravard, A., Bouvard, V. & May, E. Reciprocal down-regulation of p53 and SOD2 gene expression — implication in p53 mediated apoptosis. Oncogene 20, 430–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Yoon, K. A., Nakamura, Y. & Arakawa, H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Hussain, S. P. et al. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64, 2350–2356 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Faraonio, R. et al. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 281, 39776–39784 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Rivera, A. & Maxwell, S. A. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J. Biol. Chem. 280, 29346–29354 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Jiang, P., Du, W., Mancuso, A., Wellen, K. E. & Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689–693 (2013). The authors demonstrate that p53 regulates the metabolism and proliferation of human and mouse cells by repressing ME1 and ME2, which are important for NADPH production, lipogenesis and glutamine metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Li, Z. et al. Decision making of the p53 network: death by integration. J. Theor. Biol. 271, 205–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Cheung, E. C. et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell 25, 463–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sharpless, N. E. & DePinho, R. A. Cancer biology: gone but not forgotten. Nature 445, 606–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Junttila, M. R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, X., Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Purvis, J. E. et al. p53 dynamics control cell fate. Science 336, 1440–1444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kracikova, M., Akiri, G., George, A., Sachidanandam, R. & Aaronson, S. A. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ. 20, 576–588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goh, A. M. & Lane, D. P. How p53 wields the scales of fate: arrest or death? Transcription 3, 240–244 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Beckerman, R. & Prives, C. Transcriptional regulation by p53. Cold Spring Harb. Perspect. Biol. 2, a000935 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Aylon, Y. & Oren, M. Living with p53, dying of p53. Cell 130, 597–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Freeman, J. A. & Espinosa, J. M. The impact of post-transcriptional regulation in the p53 network. Brief. Funct. Genom. 12, 46–57 (2013).

    Article  CAS  Google Scholar 

  141. Saldana-Meyer, R. & Recillas-Targa, F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6, 1068–1077 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012). This paper investigates which p53-dependent processes are essential to its function as a tumour suppressor, showing that mice carrying p53 that is defective in the induction of cell cycle arrest, senescence and apoptosis are still protected from early-onset tumour formation. The study therefore indicates that — contrary to expectations — none of these functions of p53 is essential to its tumour suppressive capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, J. C. et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13, 483–491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sullivan, K. D. et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat. Chem. Biol. 8, 646–654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Valente, L. J. et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339–1345 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Jiang, D. et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc. Natl Acad. Sci. USA 108, 17123–17128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Timofeev, O. et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3, 1512–1525 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Glasauer, A. & Chandel, N. S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92, 90–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. de la Cova, C. et al. Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. Cell Metab. 19, 470–483 (2014). In this elegant study in D. melanogaster , the authors examine the ability of Myc-overexpressing cells to behave as super-competitors; that is, their ability to kill wild-type cells with which they come into contact. This activity depends on wild-type p53, which promotes the fitness of the super-competitor cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jackson, J. G. et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21, 793–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bertheau, P. et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 22, S27–S29 (2013).

    Article  PubMed  Google Scholar 

  157. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    Article  CAS  Google Scholar 

  164. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Green, D. R. & Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157, 65–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Reczek, C. R. & Chandel, N. S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33, 8–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Jiang. L, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Ryan and O. Maddocks for comments on the manuscript, and they apologize for failing to adequately reference the many important studies that have contributed to the understanding of p53. Their work is funded by Cancer Research UK (grant C596/A10419) and the European Research Council (grant 322842 METABOp53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

BCL-2 family proteins

A group of proteins characterized by the presence of one or more BCL-2 homology (BH) domains that regulate mitochondrial outer membrane permeabilization through both pro-apoptotic and anti-apoptotic family members.

BH3-only proteins

A subclass of BCL-2 family proteins that only contain a BCL-2 homology 3 (BH3) domain.

Ceramide

A lipid comprising sphingosine and a fatty acyl chain that is concentrated in cell membranes. In addition to a structural role, ceramide has various signalling functions, including the ability to induce apoptosis.

Glycolysis

A cytoplasmic metabolic pathway that converts glucose into pyruvate through a range of enzymatic reactions.

Tricarboxylic acid cycle

(TCA cycle). A mitochondrial cycle that utilizes metabolites derived from sugar, protein and fat to provide anabolic intermediates and the reducing agents NADH and FADH2 for ATP production through oxidative phosphorylation.

Pentose phosphate pathway

(PPP). A pathway that produces ribose sugars and NADPH from glucose and that is important for redox balance and anabolism.

Oncocytomas

Usually benign tumours composed of oncocytes with granular, eosinophilic cytoplasm.

Glutathione (GSH) tripeptide

Consists of cysteine, glutamate and glycine and functions as an important intracellular antioxidant.

Mitophagy

A selective form of autophagy that targets the mitochondria; it is generally thought to help to maintain cell health by removing damaged mitochondria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruiswijk, F., Labuschagne, C. & Vousden, K. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16, 393–405 (2015). https://doi.org/10.1038/nrm4007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing