Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multidimensional proteomics for cell biology

Key Points

  • The proteome is complex as a result of the interconnected, dynamic properties of proteins, which include abundance, isoform expression, subcellular localization, interactions, turnover rate and post-translational modifications, among others.

  • Only through analysing the variation in many of these properties can a full understanding of crucial biological regulatory mechanisms be achieved. Such analyses have so far been restricted by technical limitations and cost.

  • Data analysis and data sharing are crucial to maximise the effect of mass spectrometry-based proteomic analyses, as is making such data available to cell biologists in free to access, web-based and graphically rich formats.

  • Our understanding of cellular processes will be enhanced by predicting the interdependence of protein properties. For example, knowing that a protein with a certain modification, if localized in the cytosol, will be degraded. Future innovations will enable more comprehensive measurement of a wider range of protein properties.

Abstract

The proteome is a dynamic system in which each protein has interconnected properties — dimensions — that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multidimensional proteome analysis of cells and tissues.
Figure 2: Methods for protein turnover analysis.
Figure 3: Approaches for the analysis of protein interactions.

Similar content being viewed by others

References

  1. Batth, T. S., Francavilla, C. & Olsen, J. V. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J. Proteome Res. 13, 6176–6186 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boisvert, F. O. M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell. Proteomics 11, M111.011429 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Larance, M., Ahmad, Y., Kirkwood, K. J., Ly, T. & Lamond, A. I. Global subcellular characterization of protein degradation using quantitative proteomics. Mol. Cell. Proteom. 12, 638–650 (2013).

    Article  CAS  Google Scholar 

  5. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kirkwood, K. J., Ahmad, Y., Larance, M. & Lamond, A. I. Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Mol. Cell. Proteomics 12, 3851–3873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Engineer. 11, 49–79 (2009).

    Article  CAS  Google Scholar 

  13. Breker, M. & Schuldiner, M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nature Rev. Mol. Cell Bio. 15, 453–464 (2014).

    Article  CAS  Google Scholar 

  14. Hebert, A. S. et al. The one hour yeast proteome. Mol. Cell. Proteomics 13, 339–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nature Methods. 11, 319–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, J. et al. MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Mol. Cell. Proteomics http://dx.doi.org/10.1074/mcp.M113.031591 (2014).

  17. Silva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P. & Geromanos, S. J. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 5, 144–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  20. Washburn, M. P., Ulaszek, R., Deciu, C., Schieltz, D. M. & Yates, J. R. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Hebert, A. S. et al. Neutron-encoded mass signatures for multiplexed proteome quantification. Nature Methods 10, 332–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protoc. 4, 484–494 (2009).

    Article  CAS  Google Scholar 

  23. Hsu, J. L., Huang, S. Y., Chow, N. H. & Chen, S. H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Haverland, N. A., Fox, H. S. & Ciborowski, P. Quantitative proteomics by SWATH-MS reveals altered expression of nucleic acid binding and regulatory proteins in HIV-1-infected macrophages. J. Proteome Res. 13, 2109–2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lambert, J. P. et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nature Methods 10, 1239–1245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikolovski, N., Shliaha, P. V., Gatto, L., Dupree, P. & Lilley, K. S. Label free protein quantification for plant Golgi protein localisation and abundance. Plant Physiol. 166, 1033–1043 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ahrens, C. H., Brunner, E., Qeli, E., Basler, K. & Aebersold, R. Generating and navigating proteome maps using mass spectrometry. Nature Rev. Mol. Cell. Biol. 11, 789–801 (2010).

    Article  CAS  Google Scholar 

  31. Bensimon, A., Heck, A. J. & Aebersold, R. Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Richards, A. L., Merrill, A. E. & Coon, J. J. Proteome sequencing goes deep. Curr. Opin. Chem. Biol. 24, 11–17 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Walther, T. C. & Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 190, 491–500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274, 17184–17192 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Press, M. F., Xu, S. H., Wang, J. D. & Greene, G. L. Subcellular-distribution of estrogen-receptor and progesterone-receptor with and without specific ligand. Am. J. Pathol. 135, 857–864 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tinnikov, A. A. & Samuels, H. H. A novel cell lysis approach reveals that caspase-2 rapidly translocates from the nucleus to the cytoplasm in response to apoptotic stimuli. PloS ONE 8, e61085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dunkley, T. P. J., Watson, R., Griffin, J. L., Dupree, P. & Lilley, K. S. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics 3, 1128–1134 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Christoforou, A., Arias, A. M. & Lilley, K. S. Determining protein subcellular localization in mammalian cell culture with biochemical fractionation and iTRAQ 8-plex quantification. Methods Mol. Biol. 1156, 157–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lam, Y. W., Lamond, A. I., Mann, M. & Andersen, J. S. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baqader, N. O., Radulovic, M., Crawford, M., Stoeber, K. & Godovac-Zimmermann, J. Nuclear cytoplasmic trafficking of proteins is a major response of human fibroblasts to oxidative stress. J. Proteome Res. 13, 4398–4423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boisvert, F. M., Lam, Y. W., Lamont, D. & Lamond, A. I. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol. Cell. Proteomics 9, 457–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Ziegler, Y. S. et al. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment. PloS ONE 9, e102341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell. 49, 186–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Still, A. J. et al. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J. Biol. Chem. 288, 26209–26219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McClatchy, D. B., Liao, L. J., Lee, J. H., Park, S. K. & Yates, J. R. Dynamics of subcellular proteomes during brain development. J. Proteome Res. 11, 2467–2479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fischer, F., Hamann, A. & Osiewacz, H. D. Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci. 37, 284–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  Google Scholar 

  55. Claydon, A. J., Thom, M. D., Hurst, J. L. & Beynon, R. J. Protein turnover: measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics 12, 1194–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Larance, M. et al. Characterization of MRFAP1 turnover and interactions downstream of the NEDD8 pathway. Mol. Cell. Proteomics 11, M111.014407 (2012).

    Article  PubMed  CAS  Google Scholar 

  57. Baboo, S. et al. Most human proteins made in both nucleus and cytoplasm turn over within minutes. PloS ONE 9, e99346 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Eichelbaum, K. & Krijgsveld, J. Rapid temporal dynamics of transcription, protein synthesis and secretion during macrophage activation. Mol. Cell. Proteomics 13, 792–810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang, V. et al. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell. Mol. Life Sci. 71, 3339–3361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen, W. et al. Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus. Cell Rep. 6, 737–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J., Wang, J., Ng, S., Lin, Q. & Shen, H. M. Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy 10, 901–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trinkle-Mulcahy, L. et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183, 223–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell. 147, 690–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jager, S. et al. Global landscape of HIV-human protein complexes. Nature 481, 365–370 (2012).

    Article  CAS  Google Scholar 

  68. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, X. W. et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem. 289, 14434–14447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nature Methods 9, 907–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt, C. et al. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nature Commun. 4, http://dx.doi.org/10.1038/ncomms2985 (2013).

  73. Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nature Protoc. 9, 120–137 (2014).

    Article  CAS  Google Scholar 

  74. Fischer, L., Chen, Z. A. & Rappsilber, J. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J. Proteom. 88, 120–128 (2013).

    Article  CAS  Google Scholar 

  75. Brodie, N. I., Makepeace, K. A., Petrotchenko, E. V. & Borchers, C. H. Isotopically-coded short-range hetero-bifunctional photo-reactive crosslinkers for studying protein structure. J. Proteom. http://dx.doi.org/10.1016/j.jprot.2014.08.012 (2014).

  76. Liu, F., Wu, C., Sweedler, J. V. & Goshe, M. B. An enhanced protein crosslink identification strategy using CID-cleavable chemical crosslinkers and LC/MS(n) analysis. Proteomics 12, 401–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weisbrod, C. R. et al. In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J. Proteome Res. 12, 1569–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nature Methods 11, 1064–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bui, K. H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Greber, B. J. et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505, 515–519 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Shi, Y. et al. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol. Cell. Proteomics 13, 2927–2943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature. 512, 218–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Larsen, M. R., Trelle, M. B., Thingholm, T. E. & Jensen, O. N. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40, 790–798 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, F. J. et al. Fractionation of phosphopeptides on strong anion-exchange capillary trap column for large-scale phosphoproteome analysis of microgram samples. J. Sep. Sci. 33, 1879–1887 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Alpert, A. J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J. Chromatogr. 499, 177–196 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell. 23, 607–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Chuh, K. N. & Pratt, M. R. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24C, 27–37 (2015).

    Article  CAS  Google Scholar 

  92. Hahne, H. et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J. Proteome Res. 12, 927–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Naegle, K. M., White, F. M., Lauffenburger, D. A. & Yaffe, M. B. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol. Biosyst. 8, 2771–2782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Edwards, A. V. G., Edwards, G. J., Schwammle, V., Saxtorph, H. & Larsen, M. R. Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain. J. Proteome Res. 13, 260–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell. 142, 682–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Parker, B. L. et al. Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. J. Biol. Chem. 289, 25890–25906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Palmisano, G. et al. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol. Cell. Proteomics 11, 1191–1202 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nature Methods 10, 634–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Christophorou, M. A. et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507, 104–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moser, S. C. et al. PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev. Cell. 26, 381–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE. http://dx.doi.org/10.1126/stke.4072007cm8 (2007).

  103. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotech. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  104. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wenger, C. D., Phanstiel, D. H., Lee, M. V., Bailey, D. J. & Coon, J. J. COMPASS: A suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11, 1064–1074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park, S. K. et al. Census 2: isobaric labeling data analysis. Bioinformatics 30, 2208–2209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park, S. K., Venable, J. D., Xu, T. & Yates, J. R. 3rd. A quantitative analysis software tool for mass spectrometry-based proteomics. Nature Methods 5, 319–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2014).

  110. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 80 (2004).

    Article  Google Scholar 

  111. Gatto, L., Breckels, L. M., Wieczorek, S., Burger, T. & Lilley, K. S. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics 30, 1322–1324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Choi, H. et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nature Methods 8, 70–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, G. et al. ProHits: integrated software for mass spectrometry-based interaction proteomics. Nature Biotech. 28, 1015–1017 (2010).

    Article  CAS  Google Scholar 

  114. Wan, C. H. et al. ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS. J. Proteom. 81, 102–111 (2013).

    Article  CAS  Google Scholar 

  115. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  116. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  117. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PloS ONE 5 e13984 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nature Biotech. 28, 1248–1250 (2010).

    Article  CAS  Google Scholar 

  123. Ahmad, Y. & Lamond, A. I. A perspective on proteomics in cell biology. Trends Cell Biol. 24, 257–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ly, T. et al. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife 3, e01630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ly, T., Endo, A. & Lamond, A. I. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. eLife 4, e04534 (2015).

    Article  PubMed Central  Google Scholar 

  126. Bernas, T., Gregori, G., Asem, E. K. & Robinson, J. P. Integrating cytomics and proteomics. Mol. Cell. Proteom. 5, 2–13 (2006).

    Article  CAS  Google Scholar 

  127. Geiger, T. et al. Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell. Proteom. 12, 1709–1722 (2013).

    Article  CAS  Google Scholar 

  128. Engholm-Keller, K. et al. TiSH — a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J. Proteom. 75, 5749–5761 (2012).

    Article  CAS  Google Scholar 

  129. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. & Jorgensen, T. J. D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Neville, D. C. A. et al. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6, 2436–2445 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boisvert, F. M., Cote, J., Boulanger, M. C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2, 1319–1330 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, G. Q., Paige, J. S. & Jaffrey, S. R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotech. 28, 868–873 (2010).

    Article  CAS  Google Scholar 

  133. Lamoliatte, F. et al. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nature Commun. 5, 5409 (2014).

    Article  CAS  Google Scholar 

  134. Alpert, A. J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 80, 62–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Prior, M. J. et al. Quantitative proteomic analysis of the adipocyte plasma membrane. J. Proteome Res. 10, 4970–4982 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Ritorto, M. S., Cook, K., Tyagi, K., Pedrioli, P. G. A. & Trost, M. Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J. Proteome Res. 12, 2449–2457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gilar, M., Olivova, P., Daly, A. E. & Gebler, J. C. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  CAS  Google Scholar 

  139. Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell. 44, 878–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, C. C. et al. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics. J. Proteome Res. 14, 967–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Feng, Y. H. et al. Global analysis of protein structural changes in complex proteomes. Nature Biotech. 32, 1036–1044 (2014).

    Article  CAS  Google Scholar 

  142. Schaab, C., Geiger, T., Stoehr, G., Cox, J. & Mann, M. Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol. Cell. Proteomics 11, M111.014068 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  143. Montague, E. et al. MOPED 2.5 — an integrated multi-omics resource: multi-omics profiling expression database now includes transcriptomics data. Omics 18, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, M. et al. PaxDb, a database of protein abundance averages across all three domains of life. Mol. Cell. Proteom. 11, 492–500 (2012).

    Article  CAS  Google Scholar 

  145. Gnad, F., Gunawardena, J. & Mann, M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 39, D253–D260 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Craig, R., Cortens, J. P. & Beavis, R. C. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Shanmugam, A. K., Yocum, A. K. & Nesvizhskii, A. I. Utility of RNA-seq & GPMDB protein observation frequency for improving the sensitivity of protein identification by tandem MS. J. Proteome Res. 13, 4113–4119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnol. 32, 223–226 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I.L. is a Wellcome Trust Principal Research Fellow and M.L. is a Royal Society of Edinburgh Scottish Government Personal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Larance or Angus I. Lamond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (box)

Stable isotope labelling techniques for proteome analysis. (PDF 285 kb)

Supplementary information S2 (figure)

Web-based data sharing of multi-dimensional proteomics datasets. (PDF 193 kb)

Related links

Related links

FURTHER INFORMATION

EPD

Chorus

Cytoscape

GPMDB

Human Protein Atlas

Human Proteome Map

MaxQB

MOPED

PaxDB

Phosida

ProteomeXchange Consortium

ProteomicsDB

Glossary

Label-free quantification

Protein quantification without exogenous stable isotope labelling, using data derived either from the number of tandem mass spectrometry (MS/MS) spectra, the number of peptides identified and/or the intensity of each peptide observed.

Data-independent acquisition

(DIA). Otherwise known as 'SWATH'; a technique to acquire mass spectrometry data in predefined m/z windows across an entire liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for consistent quantification across many samples.

Differential centrifugation

Separation of particles on the basis of size and density using several steps of pelleting by centrifugation at increasing g force.

Equilibrium gradient centrifugation

Separation of particles along a gradient on the basis of their density, using a large centrifugal force until the particles reach equilibrium at the point in the gradient of the same density as their own.

Non-equilibrium gradient centrifugation

Similar to equilibrium gradient centrifugation but the application of centrifugal force is stopped before the particles reach equilibrium.

Protein correlation profiling

(PCP). The clustering of protein profiles to predict components in a particular protein complex or cellular localization.

Endoplasmic reticulum-associated protein degradation

(ERAD). A proteasome-dependent protein degradation pathway for the degradation of endoplasmic reticulum proteins.

Click reactions

Cycloaddition reactions involving chemical groups that are not found in nature, typically azide or alkyne groups. Their incorporation into cellular proteins enables labelling with biotin or fluorescent tags via the cycloaddition reaction.

Selected reaction monitoring

(SRM). A mass spectrometry method to focus the instrument on a specific fragment ion derived from a peptide ion of interest. Methods can be generated to analyse many fragment ions from the same peptide and many peptide ion precursors in a single liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis.

Third-stage tandem mass spectrum

(MS3). A spectrum acquired after further fragmentation of isolated peptide fragments from a tandem mass spectrometry analysis.

Laboratory information management system

(LIMS). A database to store experimental data and associated metadata, typically including details of experimental design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larance, M., Lamond, A. Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16, 269–280 (2015). https://doi.org/10.1038/nrm3970

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing