Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Targeting Polycomb systems to regulate gene expression: modifications to a complex story

Abstract

Polycomb group proteins are transcriptional repressors that are essential for normal gene regulation during development. Recent studies suggest that Polycomb repressive complexes (PRCs) recognize and are recruited to their genomic target sites through a range of different mechanisms, which involve transcription factors, CpG island elements and non-coding RNAs. Together with the realization that the interplay between PRC1 and PRC2 is more intricate than was previously appreciated, this has increased our understanding of the vertebrate Polycomb system at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Getting Polycomb repressive complexes (PRCs) to chromatin.
Figure 2: Beyond simple recruitment to more complex interactions.
Figure 3: Polycomb systems and gene regulation.

Similar content being viewed by others

References

  1. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  Google Scholar 

  2. Scelfo, A., Piunti, A. & Pasini, D. The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins? FEBS J. 282, 1703–1722 (2015).

    Article  CAS  Google Scholar 

  3. Simon, J. A. & Kingston, R. E. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49, 808–824 (2013).

    Article  CAS  Google Scholar 

  4. Steffen, P. A. & Ringrose, L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15, 340–356 (2014).

    Article  CAS  Google Scholar 

  5. Schwartz, Y. B. & Pirrotta, V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14, 853–864 (2013).

    Article  CAS  Google Scholar 

  6. Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155 (2013).

    Article  CAS  Google Scholar 

  7. Grossniklaus, U. & Paro, R. Transcriptional silencing by Polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6, a019331 (2014).

    Article  Google Scholar 

  8. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

    Article  CAS  Google Scholar 

  9. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  Google Scholar 

  10. Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772–4781 (2008).

    Article  CAS  Google Scholar 

  11. Dietrich, N. et al. REST-mediated recruitment of Polycomb repressor complexes in mammalian cells. PLoS Genet. 8, e1002494 (2012).

    Article  CAS  Google Scholar 

  12. Arnold, P. et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res. 23, 60–73 (2013).

    Article  CAS  Google Scholar 

  13. Ren, X. & Kerppola, T. K. REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements. Mol. Cell. Biol. 31, 2100–2110 (2011).

    Article  CAS  Google Scholar 

  14. Yu, M. et al. Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol. Cell 45, 330–343 (2012).

    Article  CAS  Google Scholar 

  15. Maier, V. K. et al. Functional proteomic analysis of repressive histone methyltransferase complexes PRC2 and G9A reveals ZNF518B as a G9A regulator. Mol. Cell. Proteomics 14, 1435–1446 (2015).

    Article  CAS  Google Scholar 

  16. Brockdorff, N. Noncoding RNA and Polycomb recruitment. RNA 19, 429–442 (2013).

    Article  CAS  Google Scholar 

  17. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004).

    Article  Google Scholar 

  18. Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 Polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    Article  CAS  Google Scholar 

  19. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  Google Scholar 

  20. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    Article  CAS  Google Scholar 

  21. da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301–316 (2014).

    Article  Google Scholar 

  22. Sarma, K. et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159, 869–883 (2014).

    Article  CAS  Google Scholar 

  23. Cerase, A. et al. Spatial separation of Xist RNA and Polycomb proteins revealed by superresolution microscopy. Proc. Natl Acad. Sci. USA 111, 2235–2240 (2014).

    Article  CAS  Google Scholar 

  24. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  Google Scholar 

  25. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  Google Scholar 

  26. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  27. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  Google Scholar 

  28. Blackledge, N. P. & Klose, R. CpG island chromatin: a platform for gene regulation. Epigenetics 6, 147–152 (2011).

    Article  CAS  Google Scholar 

  29. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  Google Scholar 

  30. Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  Google Scholar 

  31. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    Article  CAS  Google Scholar 

  32. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell (2013).

  33. Boulard, M., Edwards, J. R. & Bestor, T. H. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479–485 (2015).

    Article  CAS  Google Scholar 

  34. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  Google Scholar 

  35. Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    Article  CAS  Google Scholar 

  36. Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20, 1250–1257 (2013).

    Article  CAS  Google Scholar 

  37. Kanhere, A. et al. Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  Google Scholar 

  38. Kaneko, S., Son, J., Shen, S. S., Reinberg, D. & Bonasio, R. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1258–1264 (2013).

    Article  CAS  Google Scholar 

  39. Cifuentes-Rojas, C., Hernandez, A. J., Sarma, K. & Lee, J. T. Regulatory interactions between RNA and Polycomb repressive complex 2. Mol. Cell 55, 171–185 (2014).

    Article  CAS  Google Scholar 

  40. Kaneko, S., Son, J., Bonasio, R., Shen, S. S. & Reinberg, D. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 28, 1983–1988 (2014).

    Article  CAS  Google Scholar 

  41. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    Article  CAS  Google Scholar 

  42. Herzog, V. A. et al. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat. Genet. 46, 973–981 (2014).

    Article  CAS  Google Scholar 

  43. Cai, L. et al. An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582 (2013).

    Article  CAS  Google Scholar 

  44. Qin, S. et al. Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem. Biophys. Res. Commun. 430, 547–553 (2013).

    Article  CAS  Google Scholar 

  45. Brien, G. L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19, 1273–1281 (2012).

    Article  CAS  Google Scholar 

  46. Musselman, C. A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272 (2012).

    Article  CAS  Google Scholar 

  47. Mozzetta, C. et al. The histone H3 lysine 9 methyltransferases G9a and GLP regulate Polycomb repressive complex 2-mediated gene silencing. Mol. Cell 53, 277–289 (2014).

    Article  CAS  Google Scholar 

  48. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  Google Scholar 

  49. Wang, L. et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).

    Article  CAS  Google Scholar 

  50. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  51. Tavares, L. et al. RYBP–PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  Google Scholar 

  52. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  Google Scholar 

  53. Cooper, S. et al. Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7, 1456–1470 (2014).

    Article  CAS  Google Scholar 

  54. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    Article  CAS  Google Scholar 

  55. Bhatnagar, S. et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 516, 116–120 (2014).

    Article  CAS  Google Scholar 

  56. Cao, Q. et al. The central role of EED in the orchestration of Polycomb group complexes. Nat. Commun. 5, 3127 (2014).

    Article  Google Scholar 

  57. Tardat, M. et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell 58, 157–171 (2015).

    Article  CAS  Google Scholar 

  58. Gambetta, M. C. & Müller, J. O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic. Dev. Cell 31, 629–639 (2014).

    Article  CAS  Google Scholar 

  59. Isono, K. et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565–577 (2013).

    Article  CAS  Google Scholar 

  60. Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of Polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).

    CAS  PubMed  Google Scholar 

  61. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  Google Scholar 

  62. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  Google Scholar 

  63. Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  Google Scholar 

  64. Hosogane, M., Funayama, R., Nishida, Y., Nagashima, T. & Nakayama, K. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet. 9, e1003698 (2013).

    Article  CAS  Google Scholar 

  65. Riising, E. M. et al. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).

    Article  CAS  Google Scholar 

  66. Klose, R. J., Cooper, S., Farcas, A. M., Blackledge, N. P. & Brockdorff, N. Chromatin sampling — an emerging perspective on targeting Polycomb repressor proteins. PLoS Genet. 9, e1003717 (2013).

    Article  CAS  Google Scholar 

  67. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  Google Scholar 

  68. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  69. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    Article  CAS  Google Scholar 

  70. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  Google Scholar 

  71. Gao, Z. et al. An AUTS2–Polycomb complex activates gene expression in the CNS. Nature 516, 349–354 (2014).

    Article  CAS  Google Scholar 

  72. Xu, J. et al. Developmental control of Polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol. Cell 57, 304–316 (2015).

    Article  CAS  Google Scholar 

  73. Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).

    Article  CAS  Google Scholar 

  74. Ciferri, C. et al. Molecular architecture of human Polycomb repressive complex 2. eLife 1, e00005 (2012).

    Article  Google Scholar 

  75. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Klose laboratory is supported by the Wellcome Trust, the Lister Institute of Preventive Medicine and Exeter College, University of Oxford, UK. N.R.R. is supported by a Junior Research Fellowship at St John's College, University of Oxford. The authors would like to thank Dr Emilia Dimitrova and Dr Sarah Cooper for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Klose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blackledge, N., Rose, N. & Klose, R. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16, 643–649 (2015). https://doi.org/10.1038/nrm4067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing