Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulation of kinetochore–microtubule attachments through homeostatic control during mitosis

Abstract

Faithful chromosome segregation during mitosis is essential for genome integrity and is mediated by the bi-oriented attachment of replicated chromosomes to spindle microtubules through kinetochores. Errors in kinetochore–microtubule (k–MT) attachment that could cause chromosome mis-segregation are frequent and are corrected by the dynamic turnover of k–MT attachments. Thus, regulating the rate of spindle microtubule attachment and detachment to kinetochores is crucial for mitotic fidelity and is frequently disrupted in cancer cells displaying chromosomal instability. A model based on homeostatic principles involving receptors, a core control network, effectors and feedback control may explain the precise regulation of k–MT attachment stability during mitotic progression to ensure error-free mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetochore–microtubule attachments in mitosis.
Figure 2: Homeostatic control circuit for regulating kinetochore–microtubule attachment stability in mitosis.
Figure 3: The network of regulatory components at kinetochores.

Similar content being viewed by others

References

  1. Cimini, D. & Degrassi, F. Aneuploidy: a matter of bad connections. Trends Cell Biol. 15, 442–451 (2001).

    Google Scholar 

  2. Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta. 1786, 32–40 (2008).

    CAS  PubMed  Google Scholar 

  3. Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67, 10103–10105 (2006).

    Google Scholar 

  4. Siegel, J. J. & Amon, A. New insights into the troubles of aneuploidy. Annu. Rev. Cell Devel. Biol. 28, 189–214 (2012).

    CAS  Google Scholar 

  5. Duijf, P. H. & Benezra, R. The cancer biology of whole-chromosome instability. Oncogene 32, 4727–4736 (2013).

    CAS  PubMed  Google Scholar 

  6. Cheeseman, I. The kinetochore. Cold Spring Harb. Perspect. Biol. 6, a015826 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Cimini, D., Moree, B., Canman, J. C. & Salmon, E. D. Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J. Cell Sci. 116, 4213–4225 (2003).

    CAS  PubMed  Google Scholar 

  8. Salmon, E. D., Cimini, D., Cameron, L. A. & DeLuca, J. G. Merotelic kinetochores in mammalian tissue cells. Phil. Trans. R. Soc. 360, 553–568 (2005).

    CAS  Google Scholar 

  9. Rieder, C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 1–58 (1982).

    CAS  PubMed  Google Scholar 

  10. Magidson, V. et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146, 555–567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maure, J. F. et al. The Ndc80 looop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr. Biol. 21, 207–213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shrestha, R. L. & Draviam, V. M. Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr. Biol. 23, 1514–1526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai, S., O'Connell, C. B., Khodjakov, A. & Walczak, C. E. Chromosome congression in the absence of kinetochore fibers. Nat. Cell Biol. 11, 832–838 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    CAS  PubMed  Google Scholar 

  15. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    CAS  PubMed  Google Scholar 

  16. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994).

    CAS  PubMed  Google Scholar 

  17. Li, S. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    CAS  PubMed  Google Scholar 

  18. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  19. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–R295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734 (1995).

    CAS  PubMed  Google Scholar 

  22. Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol. 19, 1937–1942 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat. Cell Biol. 11, 27–35 (2009).

    CAS  PubMed  Google Scholar 

  24. Kabeche, L. & Compton, D. A. Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 502, 110–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stolz, A. et al. The CHIF2-BRCA1 tumor suppressor pathway ensures chromosomal stability in human somatic cells. Nat. Cell Biol. 12, 492–499 (2010).

    CAS  PubMed  Google Scholar 

  26. Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B. & Compton, D. A. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin. Cancer Res. 17, 7704–7711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hecht, B. K. et al. Cytogenetics of malignant gliomas: I. The autosomes with reference to rearrangements. Cancer Genet. Cytogenet. 84, 1–8 (1995).

    CAS  PubMed  Google Scholar 

  28. Bakhoum, S. F. & Compton, D. A. Kinetochores and disease: keeping microtubule dynamics in check! Curr. Opin. Cell Biol. 24, 64–70 (2012).

    CAS  PubMed  Google Scholar 

  29. Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W. C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell. Biol. 13, 789–803 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora B through mitosis. J. Cell Biol. 173, 833–837 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140 (2011).

    CAS  PubMed  Google Scholar 

  32. Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16, 1711–1718 (2006).

    CAS  PubMed  Google Scholar 

  33. Shannon, K. B. & Salmon, E. D. Chromosome dynamics: new light on Aurora B kinase function. Curr. Biol. 12, R458–R460 (2002).

    CAS  PubMed  Google Scholar 

  34. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, E., Ballister, E. R. & Lampson, M. A. Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J. Cell Biol. 194, 539–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Welburn, J. P. et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell, C. S. & Desai, A. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization. Nature 497, 118–121 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. DeLuca, K. F., Lens, S. M. & DeLuca, J. G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J. Cell Sci. 124, 622–634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    CAS  PubMed  Google Scholar 

  40. Jaqaman, K. et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665–679 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    CAS  PubMed  Google Scholar 

  42. Bruinsma, W., Baaijmakers, J. A. & Medema, R. H. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem. Sci. 37, 534–542 (2012).

    CAS  PubMed  Google Scholar 

  43. Maffini, S. et al. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr. Biol. 19, 1566–1572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Maia, A. R. et al. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J. Cell Biol. 199, 285–301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Manning, A. L., Bakhoum, S. F., Maffini, S., Correia-Melo, C. Maiato, H. & Compton, D. A. CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J. 29, 3531–3543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    CAS  PubMed  Google Scholar 

  47. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    CAS  PubMed  Google Scholar 

  48. Zaytsev, A. V., Sundin, L. J., DeLuca, K. F., Grishchuk, E. L. & DeLuca, J. G. Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J. Cell Biol. 206, 45–59 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahonen, L. F. et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr. Biol. 15, 1078–1089 (2005).

    CAS  PubMed  Google Scholar 

  50. Lenart, P. et al. The small-molecule inhibitor BI2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    CAS  PubMed  Google Scholar 

  51. Elowe, S., Hummer, S., Uldschmid, A., Li, X. & Nigg, E. A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, D., Davydenko, O. & Lampson, M. A. Polo-like kinase 1 regulates kinetocohore-microtubule dynamics and spindle checkpoint silencing. J. Cell Biol. 198, 491–499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lampson, M. A. & Kapoor, M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat. Cell Biol. 7, 93–98 (2005).

    CAS  PubMed  Google Scholar 

  54. Manning, A. L. et al. The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol. Biol. Cell 18, 2970–2979 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hood, E. A., Kettenbach, A. N., Gerber, S. A. & Compton, D. A. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol. Biol. Cell 23, 2264–2274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carmena, M. et al. The chromosomal passenger complex activated Polo kinase at centromeres. PLoS Biol. 10, e1001250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kruse, T. et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J. Cell Sci. 126, 1086–1092 (2013).

    CAS  PubMed  Google Scholar 

  58. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265–1271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Knowlton, A. L., Lan, W. & Stukenberg, P. T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr. Biol. 16, 1705–1710 (2006).

    CAS  PubMed  Google Scholar 

  60. Chu, Y. et al. Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J. Mol. Cell. Biol. 3, 260–267 (2011).

    CAS  PubMed  Google Scholar 

  61. Salimian, K. J. et al. Feedback control in sensing chromosome biorientation by the Aurora B kinase. Curr. Biol. 21, 1158–1165 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol. 8, 180–187 (2006).

    CAS  PubMed  Google Scholar 

  63. Trinkle-Mulcahy, L. et al. Time-lapse imaging reveals dynamic relocalization of PP1γ throughout the mammalian cell cycle. Mol. Biol. Cell 14, 107–117 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. De Wulf, P., Montani, F. & Visintin, R. Protein phosphatases take the mitotic stage. Curr. Opin. Cell Biol. 21, 806–815 (2009).

    CAS  PubMed  Google Scholar 

  65. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Parry, D. H., Hickson, G. R., O'Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Soni, D. V., Sramkoski, R. M., Lam, M., Stegan, T. & Jacobberger, J. W. Cyclin B1 is rate limiting but not essential for mitotic entry and progression in mammalian somatic cells. Cell Cycle 7, 1285–1300 (2008).

    CAS  PubMed  Google Scholar 

  68. Vazquez-Novelle, M. D. et al. Cdk1 inactivation terminates mitotic checkpoint surveillance and stabilizes kinetochore attachments in anaphase. Curr. Biol. 24, 638–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Porter, I. M. et al. Bod1, a novel kinetochore protein required for chromosome biorientation. J. Cell Biol. 179, 187–197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Porter, I. M., Schleicher, K., Porter, M. & Swedlow, J. R. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat. Commun. 4, 2677 (2013).

    PubMed  Google Scholar 

  71. Collin, P., Nashchenkina, O., Walker, R. & Pines, J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat. Cell Biol. 15, 1378–1385 (2013).

    CAS  PubMed  Google Scholar 

  72. DiFiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).

    CAS  Google Scholar 

  73. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell. Biol. 8, 379–393 (2007).

    CAS  PubMed  Google Scholar 

  75. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Uchida, K. S. K. et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184, 383–390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signaling at the kinetochore. Nat. Rev. Mol. Cell. Biol. 14, 25–37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).

    CAS  PubMed  Google Scholar 

  79. Indjeian, V. B. & Murray, A. W. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr. Biol. 17, 1837–1846 (2007).

    CAS  PubMed  Google Scholar 

  80. Loncarek, J. et al. The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450, 745–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).

    CAS  PubMed  Google Scholar 

  82. Logarinho, E., Resende, T., Torres, C. & Bousbaa, H. The human spindle assembly checkpoint protein Bub3 is required for the establishment of efficient kinetochore-microtubule attachments. Mol. Biol. Cell. 19, 1798–1813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kabeche, L. & Compton, D. A. Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr. Biol. 22, 638–644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Amaro, A. C. et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nature Cell Biol. 12, 319–329 (2010).

    CAS  PubMed  Google Scholar 

  85. McHedlishvili, N. et al. Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation. J. Cell Sci. 125, 906–918 (2012).

    CAS  PubMed  Google Scholar 

  86. Ye, F. et al. HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr. Biol. 21, 1584–1591 (2011).

    CAS  PubMed  Google Scholar 

  87. Wang, X. et al. Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J. Biol. Chem. 287, 39380–39390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. DeLuca, J. G. et al. Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell. 16, 519–531 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ishii, S., Kurasawa, Y., Wong, J. & Yu-Lee, L. Y. Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl Acad. Sci. USA 105, 4179–4184 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gaitanos, T. N. et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the laboratory for their input and feedback on the manuscript. This work was supported by grants from the US National Institutes of Health (GM51542 to D.A.C and GM008704 to L.K.) and the American Cancer Society (PF-12-103-01-CCG to K.M.G.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane A. Compton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godek, K., Kabeche, L. & Compton, D. Regulation of kinetochore–microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16, 57–64 (2015). https://doi.org/10.1038/nrm3916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing