Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Steering cell migration: lamellipodium dynamics and the regulation of directional persistence

Key Points

  • Lamellipodial protrusion depends on the force generated by actin polymerization. Actin polymerization is the sum of the activities of nucleators — for example, the actin-related protein 2/3 (ARP2/3) complex — and elongators — formins and ENA/VASP proteins.

  • Small GTPases, such as RAC and CDC42, control both actin nucleators and actin elongators; RAC activates the WASP family verprolin-homologous protein (WAVE) complex upstream of the ARP2/3 complex independently of the activation of the formin FMNL2 by CDC42, but RAC may coordinate ARP2/3 with ENA/VASP proteins by inducing a complex between WAVE and lamellipodin.

  • The speed of cell migration depends on the turnover of actin branched junctions and on the elongation of actin networks.

  • An intrinsic instability of lamellipodia is due to ARP2/3 inhibitory proteins, such as Arpin, which is also activated downstream of RAC.

  • The persistence of lamellipodia is the major controller of cell directionality.

  • Directional persistence (that is, the characteristic time during which a cell sustains its migration in the same direction) is the combinatory result of several intertwined positive- and negative-feedback loops that sustain or stop actin polymerization at the leading edge.

Abstract

Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth factor receptor signalling regulates lamellipodin and the WAVE complex.
Figure 2: Regulation of WAVE complex activity by phosphorylation.
Figure 3: Priming of the ARP2/3 complex.
Figure 4: Direct effectors of actin polymerization.
Figure 5: Balance of actin branching versus elongation regulates lamellipodial persistence and protrusion speed.
Figure 6: Positive- and negative-feedback loops between RAC and actin polymerization govern cell migration.

Similar content being viewed by others

References

  1. Ridley, A. J. Life at the leading edge. Cell 145, 1012–1022 (2011).

    CAS  PubMed  Google Scholar 

  2. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nature Rev. Mol. Cell Biol. 11, 237–251 (2010).

    CAS  Google Scholar 

  3. Insall, R. H. & Machesky, L. M. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009).

    CAS  PubMed  Google Scholar 

  4. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    CAS  PubMed  Google Scholar 

  5. Rorth, P. Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev. Cell 20, 9–18 (2011).

    CAS  PubMed  Google Scholar 

  6. Stramer, B. et al. Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo. J. Cell Biol. 189, 681–689 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moore, R. et al. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development 140, 4763–4775 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Teddy, J. M. & Kulesa, P. M. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131, 6141–6151 (2004).

    CAS  PubMed  Google Scholar 

  9. Cooper, J. A. Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J. Cell Biol. 202, 725–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nature Rev. Mol. Cell Biol. 10, 538–549 (2009).

    CAS  Google Scholar 

  11. Suraneni, P. et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Krause, M. et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev. Cell 7, 571–583 (2004).

    CAS  PubMed  Google Scholar 

  13. Wu, C. et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987 (2012). Together with reference 11, this paper shows that the ARP2/3 complex is required for lamellipodium formation. These papers show that ARP2/3- deficient cells are defective in persistent cell migration (reference 11) and display highly reduced random cell migration and haptotaxis (reference 13).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Law, A. L. et al. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J. Cell Biol. 203, 673–689 (2013). This paper shows that lamellipodin directly interacts with the WAVE complex downstream of activated RAC, thereby controlling lamellipodium formation and the speed and persistence of cell migration in vitro , and both mesenchymal and epithelial collective cell migration in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nurnberg, A., Kitzing, T. & Grosse, R. Nucleating actin for invasion. Nature Rev. Cancer 11, 177–187 (2011).

    Google Scholar 

  16. Hoshino, D., Branch, K. M. & Weaver, A. M. Signaling inputs to invadopodia and podosomes. J. Cell Sci. 126, 2979–2989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Paluch, E. K. & Raz, E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25, 582–590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Poincloux, R. et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl Acad. Sci. USA 108, 1943–1948 (2011).

    CAS  PubMed  Google Scholar 

  19. Panopoulos, A., Howell, M., Fotedar, R. & Margolis, R. L. Glioblastoma motility occurs in the absence of actin polymer. Mol. Biol. Cell 22, 2212–2220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper, J. A. & Sept, D. New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell Mol. Biol. 267, 183–206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    CAS  PubMed  Google Scholar 

  22. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    CAS  PubMed  Google Scholar 

  23. Barzik, M. et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasic, L., Kotova, T. & Schafer, D. A. Ena/VASP proteins capture actin filament barbed ends. J. Biol. Chem. 283, 9814–9819 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Breitsprecher, D. et al. Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J. 30, 456–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen, S. D. & Mullins, R. D. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191, 571–584 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Block, J. et al. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22, 1005–1012 (2012). This study provides good evidence that FMNL2 is the first formin to robustly localize to the edge of lamellipodia as an N -myristoylated protein downstream of CDC42. It also shows that FMNL2 predominantly elongates actin filaments, thereby increasing cell migration speed.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol. 1, 321–322 (1999).

    CAS  PubMed  Google Scholar 

  30. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008). A seminal paper showing the molecular behaviour of the major players involved in lamellipodium formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Q., Zhang, X. F., Pollard, T. D. & Forscher, P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. J. Cell Biol. 197, 939–956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giannone, G., Mege, R. M. & Thoumine, O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol. 19, 475–486 (2009).

    CAS  PubMed  Google Scholar 

  33. Rottner, K., Hanisch, J. & Campellone, K. G. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20, 650–661 (2010).

    CAS  PubMed  Google Scholar 

  34. Veltman, D. M., King, J. S., Machesky, L. M. & Insall, R. H. SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods. J. Cell Biol. 198, 501–508 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, H. et al. Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr. Biol. 23, 107–117 (2013).

    CAS  PubMed  Google Scholar 

  36. Derivery, E. & Gautreau, A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 32, 119–131 (2010).

    CAS  PubMed  Google Scholar 

  37. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    CAS  PubMed  Google Scholar 

  38. Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc. Natl Acad. Sci. USA 101, 4379–4383 (2004).

    CAS  PubMed  Google Scholar 

  39. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004).

    CAS  PubMed  Google Scholar 

  40. Hirao, N. et al. NESH (Abi-3) is present in the Abi/WAVE complex but does not promote c-Abl-mediated phosphorylation. FEBS Lett. 580, 6464–6470 (2006).

    CAS  PubMed  Google Scholar 

  41. Stovold, C. F., Millard, T. H. & Machesky, L. M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol. 6, 11 (2005).

    PubMed  PubMed Central  Google Scholar 

  42. Derivery, E., Lombard, B., Loew, D. & Gautreau, A. The Wave complex is intrinsically inactive. Cell. Motil. Cytoskeleton 66, 777–790 (2009).

    CAS  PubMed  Google Scholar 

  43. Ismail, A. M., Padrick, S. B., Chen, B., Umetani, J. & Rosen, M. K. The WAVE regulatory complex is inhibited. Nature Struct. Mol. Biol. 16, 561–563 (2009).

    CAS  Google Scholar 

  44. Chen, Z. et al. Structure and control of the actin regulatory WAVE complex. Nature 468, 533–538 (2010). This paper presents the crystal structure of the WAVE complex, revealing that the ARP2/3-activating WCA domain of WAVE is sequestered within the complex, explaining how the WAVE complex is autoinhibited. Site-directed mutagenesis showed that the WAVE complex may be activated by RAC and Tyr phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Steffen, A. et al. Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J. Cell Sci. 126, 4572–4588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi, K. et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 273, 291–295 (1998).

    CAS  PubMed  Google Scholar 

  47. Lebensohn, A. M. & Kirschner, M. W. Activation of the WAVE complex by coincident signals controls actin assembly. Mol. Cell 36, 512–524 (2009). This paper describes in vitro reconstitution of activation of the WAVE complex using purified components. To obtain full activation, prenylated RAC, PtdIns(3,4,5)P 3 -containing liposomes and the phosphorylated WAVE complex were required.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol. 6, 420–426 (2004).

    CAS  PubMed  Google Scholar 

  49. Padrick, S. B. et al. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32, 426–438 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Padrick, S. B., Doolittle, L. K., Brautigam, C. A., King, D. S. & Rosen, M. K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl Acad. Sci. USA 108, E472–E479 (2011).

    CAS  PubMed  Google Scholar 

  51. Ti, S. C., Jurgenson, C. T., Nolen, B. J. & Pollard, T. D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc. Natl Acad. Sci. USA 108, E463–E471 (2011).

    CAS  PubMed  Google Scholar 

  52. Echarri, A., Lai, M. J., Robinson, M. R. & Pendergast, A. M. Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol. Cell. Biol. 24, 4979–4993 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fan, P. D., Cong, F. & Goff, S. P. Homo- and hetero-oligomerization of the c-Abl kinase and Abelson-interactor-1. Cancer Res. 63, 873–877 (2003).

    CAS  PubMed  Google Scholar 

  54. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    CAS  PubMed  Google Scholar 

  55. Disanza, A. et al. CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32, 2735–2750 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koronakis, V. et al. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc. Natl Acad. Sci. USA 108, 14449–14454 (2011). This paper describes the cooperativity of active ARF proteins and active RAC for efficient WAVE complex activation in cell extracts. ARF proteins are activated downstream of PtdIns(3,4,5)P 3 in cell extracts. The requirement for ARF proteins specifically refers to ARF1, ARF5 or ARL1.

    CAS  PubMed  Google Scholar 

  57. Schweitzer, J. K., Sedgwick, A. E. & D'Souza-Schorey, C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin. Cell Dev. Biol. 22, 39–47 (2011).

    CAS  PubMed  Google Scholar 

  58. Gillingham, A. K. & Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007).

    CAS  PubMed  Google Scholar 

  59. Humphreys, D., Liu, T., Davidson, A. C., Hume, P. J. & Koronakis, V. The Drosophila Arf1 homologue Arf79F is essential for lamellipodium formation. J. Cell Sci. 125, 5630–5635 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Boulay, P. L., Cotton, M., Melancon, P. & Claing, A. ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. J. Biol. Chem. 283, 36425–36434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J. et al. Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation. J. Neurosci. 33, 15735–15746 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Humphreys, D., Davidson, A. C., Hume, P. J., Makin, L. E. & Koronakis, V. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc. Natl Acad. Sci. USA 110, 16880–16885 (2013).

    CAS  PubMed  Google Scholar 

  63. Lu, H. et al. Exo70 isoform switching upon epithelial-mesenchymal transition mediates cancer cell invasion. Dev. Cell 27, 560–573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, J. et al. Exo70 stimulates the Arp2/3 complex for lamellipodia formation and directional cell migration. Curr. Biol. 22, 1510–1515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zuo, X. et al. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nature Cell Biol. 8, 1383–1388 (2006). This paper, together with reference 64, shows that EXO70, a component of the exocyst complex that is normally implicated in regulating exocytosis, binds to the ARP2/3 complex; this leads to increased interaction between WAVE2 and the ARP2/3 complex, thereby promoting actin filament branching, lamellipodium formation and the directional persistence of cell migration.

    CAS  PubMed  Google Scholar 

  66. Baust, T., Czupalla, C., Krause, E., Bourel-Bonnet, L. & Hoflack, B. Proteomic analysis of adaptor protein 1A coats selectively assembled on liposomes. Proc. Natl Acad. Sci. USA 103, 3159–3164 (2006).

    CAS  PubMed  Google Scholar 

  67. Anitei, M. et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nature Cell Biol. 12, 330–340 (2010).

    CAS  PubMed  Google Scholar 

  68. Gautier, J. J. et al. Clathrin is required for Scar/Wave-mediated lamellipodium formation. J. Cell Sci. 124, 3414–3427 (2011).

    CAS  PubMed  Google Scholar 

  69. Huang, C. H., Lin, T. Y., Pan, R. L. & Juang, J. L. The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. J. Biol. Chem. 282, 32442–32452 (2007).

    CAS  PubMed  Google Scholar 

  70. Leng, Y. et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc. Natl Acad. Sci. USA 102, 1098–1103 (2005).

    CAS  PubMed  Google Scholar 

  71. Stuart, J. R., Gonzalez, F. H., Kawai, H. & Yuan, Z. M. c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading. J. Biol. Chem. 281, 31290–31297 (2006).

    CAS  PubMed  Google Scholar 

  72. Sossey-Alaoui, K., Li, X. & Cowell, J. K. c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J. Biol. Chem. 282, 26257–26265 (2007).

    CAS  PubMed  Google Scholar 

  73. Fujita, A. et al. Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective Abelson kinase: requirements of myristoylation and src homology 3 domain. Mol. Pharmacol. 75, 75–84 (2009).

    CAS  PubMed  Google Scholar 

  74. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 19, 4589–4600 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ardern, H. et al. Src-dependent phosphorylation of Scar1 promotes its association with the Arp2/3 complex. Cell. Motil. Cytoskeleton 63, 6–13 (2006).

    CAS  PubMed  Google Scholar 

  76. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006).

    CAS  PubMed  Google Scholar 

  77. Miyamoto, Y., Yamauchi, J. & Tanoue, A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J. Neurosci. 28, 8326–8337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Soderling, S. H. et al. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J. Neurosci. 27, 355–365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Miki, H., Fukuda, M., Nishida, E. & Takenawa, T. Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J. Biol. Chem. 274, 27605–27609 (1999).

    CAS  PubMed  Google Scholar 

  80. Nakanishi, O., Suetsugu, S., Yamazaki, D. & Takenawa, T. Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex. J. Biochem. 141, 319–325 (2007).

    CAS  PubMed  Google Scholar 

  81. Danson, C. M., Pocha, S. M., Bloomberg, G. B. & Cory, G. O. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity. J. Cell Sci. 120, 4144–4154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mendoza, M. C. et al. ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol. Cell 41, 661–671 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol. 10, 591–598 (2003).

    CAS  PubMed  Google Scholar 

  84. Pocha, S. M. & Cory, G. O. WAVE2 is regulated by multiple phosphorylation events within its VCA domain. Cell. Motil. Cytoskeleton 66, 36–47 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ura, S. et al. Pseudopod growth and evolution during cell movement is controlled through SCAR/WAVE dephosphorylation. Curr. Biol. 22, 553–561 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, B. et al. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156, 195–207 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vehlow, A. et al. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J. 32, 2722–2734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Rev. Mol. Cell Biol. 6, 167–180 (2005).

    CAS  Google Scholar 

  89. Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24, 4943–4954 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    CAS  PubMed  Google Scholar 

  91. Achard, V. et al. A “primer”-based mechanism underlies branched actin filament network formation and motility. Curr. Biol. 20, 423–428 (2010). This paper reports the direct visualization of the absolute requirement of a primer filament in order to generate an ARP2/3-dependent branched actin network.

    CAS  PubMed  Google Scholar 

  92. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  93. Chen, Q. & Pollard, T. D. Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr. Biol. 23, 1154–1162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zuchero, J. B., Coutts, A. S., Quinlan, M. E., Thangue, N. B. & Mullins, R. D. p53-cofactor JMY is a multifunctional actin nucleation factor. Nature Cell Biol. 11, 451–459 (2009).

    CAS  PubMed  Google Scholar 

  95. Firat-Karalar, E. N., Hsiue, P. P. & Welch, M. D. The actin nucleation factor JMY is a negative regulator of neuritogenesis. Mol. Biol. Cell 22, 4563–4574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Coutts, A. S., Weston, L. & La Thangue, N. B. A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc. Natl Acad. Sci. USA 106, 19872–19877 (2009).

    CAS  PubMed  Google Scholar 

  97. Schluter, K. et al. JMY is involved in anterograde vesicle trafficking from the trans-Golgi network. Eur. J. Cell Biol. 93, 194–204 (2014).

    PubMed  Google Scholar 

  98. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wagner, A. R., Luan, Q., Liu, S. L. & Nolen, B. J. Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments. Curr. Biol. 23, 1990–1998 (2013). This paper reports, for the first time, that some ARP2/3 activators, such as the orthologous proteins DIP1 and SPIN90, induce nucleation of linear actin filaments. Such activators may prime the ARP2/3 complex for the subsequent generation of branched actin networks.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, D. J. et al. Interaction of SPIN90 with the Arp2/3 complex mediates lamellipodia and actin comet tail formation. J. Biol. Chem. 281, 617–625 (2006).

    CAS  PubMed  Google Scholar 

  101. Fukuoka, M. et al. A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol. 152, 471–482 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fukumi-Tominaga, T. et al. DIP/WISH-deficient mice reveal Dia- and N-WASP-interacting protein as a regulator of cytoskeletal dynamics in embryonic fibroblasts. Genes Cells 14, 1197–1207 (2009).

    CAS  PubMed  Google Scholar 

  103. Oh, H. et al. SPIN90 knockdown attenuates the formation and movement of endosomal vesicles in the early stages of epidermal growth factor receptor endocytosis. PLoS ONE 8, e82610 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Kim, S. H. et al. Interaction of SPIN90 with syndapin is implicated in clathrin-mediated endocytic pathway in fibroblasts. Genes Cells 11, 1197–1211 (2006).

    CAS  PubMed  Google Scholar 

  105. Basu, R. & Chang, F. Characterization of dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis. Curr. Biol. 21, 905–916 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Vinzenz, M. et al. Actin branching in the initiation and maintenance of lamellipodia. J. Cell Sci. 125, 2775–2785 (2012).

    CAS  PubMed  Google Scholar 

  107. Wu, C. et al. Loss of Arp2/3 induces an NF-κB-dependent, nonautonomous effect on chemotactic signaling. J. Cell Biol. 203, 907–916 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Reinhard, M. et al. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J. 11, 2063–2070 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    CAS  PubMed  Google Scholar 

  110. Chereau, D. & Dominguez, R. Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J. Struct. Biol. 155, 195–201 (2006).

    CAS  PubMed  Google Scholar 

  111. Michael, M., Vehlow, A., Navarro, C. & Krause, M. c-Abl, Lamellipodin, and Ena/VASP proteins cooperate in dorsal ruffling of fibroblasts and axonal morphogenesis. Curr. Biol. 20, 783–791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Skoble, J., Auerbuch, V., Goley, E. D., Welch, M. D. & Portnoy, D. A. Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J. Cell Biol. 155, 89–100 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Philippar, U. et al. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15, 813–828 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pellegrin, S. & Mellor, H. The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133 (2005).

    CAS  PubMed  Google Scholar 

  115. Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol. 7, 619–625 (2005).

    CAS  PubMed  Google Scholar 

  116. Lebrand, C. et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42, 37–49 (2004).

    CAS  PubMed  Google Scholar 

  117. Yang, C. et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 5, e317 (2007).

    PubMed  PubMed Central  Google Scholar 

  118. Block, J. et al. Filopodia formation induced by active mDia2/Drf3. J. Microsc. 231, 506–517 (2008).

    CAS  PubMed  Google Scholar 

  119. Gupton, S. L., Eisenmann, K., Alberts, A. S. & Waterman-Storer, C. M. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120, 3475–3487 (2007).

    CAS  PubMed  Google Scholar 

  120. Mejillano, M. R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    CAS  PubMed  Google Scholar 

  121. Uruno, T., Remmert, K. & Hammer, J. A. CARMIL is a potent capping protein antagonist: identification of a conserved CARMIL domain that inhibits the activity of capping protein and uncaps capped actin filaments. J. Biol. Chem. 281, 10635–10650 (2006).

    CAS  PubMed  Google Scholar 

  122. Yang, C. et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell 9, 209–221 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jung, G., Remmert, K., Wu, X., Volosky, J. M. & Hammer, J. A. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J. Cell Biol. 153, 1479–1497 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zwolak, A. et al. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nature Commun. 4, 2523 (2013).

    Google Scholar 

  125. Liang, Y., Niederstrasser, H., Edwards, M., Jackson, C. E. & Cooper, J. A. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell 20, 5290–5305 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bugyi, B., Didry, D. & Carlier, M. F. How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach. EMBO J. 29, 14–26 (2010).

    CAS  PubMed  Google Scholar 

  127. Reymann, A. C. et al. Actin network architecture can determine myosin motor activity. Science 336, 1310–1314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wilson, C. A. et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465, 373–377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Blanchoin, L., Pollard, T. D. & Mullins, R. D. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273–1282 (2000).

    CAS  PubMed  Google Scholar 

  130. Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 20, 861–867 (2010). The first paper to show that GMF is a specialized paralogue of cofilin that debranches ARP2/3 branched junctions from actin networks.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ydenberg, C. A. et al. GMF severs actin-Arp2/3 complex branch junctions by a cofilin-like mechanism. Curr. Biol. 23, 1037–1045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Luan, Q. & Nolen, B. J. Structural basis for regulation of Arp2/3 complex by GMF. Nature Struct. Mol. Biol. 20, 1062–1068 (2013).

    CAS  Google Scholar 

  133. Boczkowska, M., Rebowski, G. & Dominguez, R. Glia maturation factor (GMF) interacts with Arp2/3 complex in a nucleotide state-dependent manner. J. Biol. Chem. 288, 25683–25688 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lippert, D. N. & Wilkins, J. A. Glia maturation factor gamma regulates the migration and adherence of human T lymphocytes. BMC Immunol. 13, 21 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zuo, P. et al. The expression of glia maturation factors and the effect of glia maturation factor-gamma on angiogenic sprouting in zebrafish. Exp. Cell Res. 319, 707–717 (2013).

    CAS  PubMed  Google Scholar 

  136. Li, Y. L. et al. Identification of glia maturation factor β as an independent prognostic predictor for serous ovarian cancer. Eur. J. Cancer 46, 2104–2118 (2010).

    CAS  PubMed  Google Scholar 

  137. Zuo, P. et al. High GMFG expression correlates with poor prognosis and promotes cell migration and invasion in epithelial ovarian cancer. Gynecol. Oncol. 132, 745–751 (2014).

    CAS  PubMed  Google Scholar 

  138. Kaksonen, M., Peng, H. B. & Rauvala, H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J. Cell Sci. 113, 4421–4426 (2000).

    CAS  PubMed  Google Scholar 

  139. Cai, L., Makhov, A. M., Schafer, D. A. & Bear, J. E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Helgeson, L. A. & Nolen, B. J. Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. eLife 2, e00884 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Bryce, N. S. et al. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr. Biol. 15, 1276–1285 (2005).

    CAS  PubMed  Google Scholar 

  142. Lai, F. P. et al. Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol. Biol. Cell 20, 3209–3223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sung, B. H., Zhu, X., Kaverina, I. & Weaver, A. M. Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Curr. Biol. 21, 1460–1469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Clark, E. S., Whigham, A. S., Yarbrough, W. G. & Weaver, A. M. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 67, 4227–4235 (2007).

    CAS  PubMed  Google Scholar 

  145. Puthenveedu, M. A. et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143, 761–773 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chan, K. T., Creed, S. J. & Bear, J. E. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 21, 481–488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. de Hostos, E. L. et al. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility. J. Cell Biol. 120, 163–173 (1993).

    CAS  PubMed  Google Scholar 

  148. Brieher, W. M., Kueh, H. Y., Ballif, B. A. & Mitchison, T. J. Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J. Cell Biol. 175, 315–324 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Galkin, V. E. et al. Coronin-1A stabilizes F-actin by bridging adjacent actin protomers and stapling opposite strands of the actin filament. J. Mol. Biol. 376, 607–613 (2008).

    CAS  PubMed  Google Scholar 

  150. Gandhi, M., Achard, V., Blanchoin, L. & Goode, B. L. Coronin switches roles in actin disassembly depending on the nucleotide state of actin. Mol. Cell 34, 364–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Humphries, C. L. et al. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J. Cell Biol. 159, 993–1004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, S. L., Needham, K. M., May, J. R. & Nolen, B. J. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J. Biol. Chem. 286, 17039–17046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cai, L., Holoweckyj, N., Schaller, M. D. & Bear, J. E. Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility. J. Biol. Chem. 280, 31913–31923 (2005).

    CAS  PubMed  Google Scholar 

  155. Williams, H. C. et al. Role of coronin 1B in PDGF-induced migration of vascular smooth muscle cells. Circ. Res. 111, 56–65 (2012).

    CAS  PubMed  Google Scholar 

  156. Rocca, D. L., Martin, S., Jenkins, E. L. & Hanley, J. G. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nature Cell Biol. 10, 259–271 (2008).

    CAS  PubMed  Google Scholar 

  157. Maritzen, T. et al. Gadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex. Proc. Natl Acad. Sci. USA 109, 10382–10387 (2012).

    CAS  PubMed  Google Scholar 

  158. Dang, I. et al. Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503, 281–284 (2013). This paper reports the identification of the ARP2/3 inhibitory protein Arpin and its inhibitory role in cell migration. Arpin inhibits the two major parameters of cell migration: cell speed and directional persistence.

    CAS  PubMed  Google Scholar 

  159. Nakamura, Y. et al. PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J. 30, 719–730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Rocca, D. L. et al. The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity. Neuron 79, 293–307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Harms, B. D., Bassi, G. M., Horwitz, A. R. & Lauffenburger, D. A. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys. J. 88, 1479–1488 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Arrieumerlou, C. & Meyer, T. A local coupling model and compass parameter for eukaryotic chemotaxis. Dev. Cell 8, 215–227 (2005). This study challenges the model that lamellipodium formation during chemotaxis is controlled by the global integration of competing signals. It instead shows that cells self-polarize and that the local activation of receptors generates small protrusions of existing lamellipodia towards the guidance cue (see also reference 163).

    CAS  PubMed  Google Scholar 

  163. Andrew, N. & Insall, R. H. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nature Cell Biol. 9, 193–200 (2007). This study challenges existing models that lamellipodia are generated de novo in the direction of a guidance cue. This paper instead shows that lamellipodia are randomly generated and the ones that extend towards the chemoattractant are maintained.

    CAS  PubMed  Google Scholar 

  164. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    CAS  PubMed  Google Scholar 

  165. Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647–660 (1996).

    CAS  PubMed  Google Scholar 

  166. Krause, M. et al. Fyn-binding protein (Fyb)/SLP-76- associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol. 149, 181–194 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. Science 322, 390–395 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Danuser, G., Allard, J. & Mogilner, A. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29, 501–528 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wu, C. F. & Lew, D. J. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol. 23, 476–483 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).

    CAS  Google Scholar 

  171. Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75–81 (1999).

    CAS  PubMed  Google Scholar 

  172. Osmani, N., Peglion, F., Chavrier, P. & Etienne-Manneville, S. Cdc42 localization and cell polarity depend on membrane traffic. J. Cell Biol. 191, 1261–1269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bretscher, M. S. Asymmetry of single cells and where that leads. Annu. Rev. Biochem. 83, 275–289 (2014).

    CAS  PubMed  Google Scholar 

  174. Desai, S. P., Bhatia, S. N., Toner, M. & Irimia, D. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys. J. 104, 2077–2088 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev. Mol. Cell Biol. 9, 846–859 (2008).

    CAS  Google Scholar 

  176. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).

    CAS  PubMed  Google Scholar 

  177. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    CAS  PubMed  Google Scholar 

  178. Castro-Castro, A. et al. Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO J. 30, 3913–3927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fujiwara, I., Remmert, K. & Hammer, J. A. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285, 2707–2720 (2010).

    CAS  PubMed  Google Scholar 

  180. Garcia Arguinzonis, M. I., Galler, A. B., Walter, U., Reinhard, M. & Simm, A. Increased spreading, Rac/p21-activated kinase (PAK) activity, and compromised cell motility in cells deficient in vasodilator-stimulated phosphoprotein (VASP). J. Biol. Chem. 277, 45604–45610 (2002).

    CAS  PubMed  Google Scholar 

  181. Lawson, C. D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Jones, M. C., Machida, K., Mayer, B. J. & Turner, C. E. Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration. Mol. Biol. Cell 24, 1882–1894 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Weiner, O. D. et al. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 4, 509–513 (2002).

    CAS  PubMed  Google Scholar 

  184. Millius, A., Dandekar, S. N., Houk, A. R. & Weiner, O. D. Neutrophils establish rapid and robust WAVE complex polarity in an actin-dependent fashion. Curr. Biol. 19, 253–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kuiper, J. W., Sun, C., Magalhaes, M. A. & Glogauer, M. Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 118, 6164–6171 (2011).

    CAS  PubMed  Google Scholar 

  186. Cheng, G., Diebold, B. A., Hughes, Y. & Lambeth, J. D. Nox1-dependent reactive oxygen generation is regulated by Rac1. J. Biol. Chem. 281, 17718–17726 (2006).

    CAS  PubMed  Google Scholar 

  187. Taulet, N., Delorme-Walker, V. D. & DerMardirossian, C. Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS ONE 7, e41342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Morimatsu, T., Kawagoshi, A., Yoshida, K. & Tamura, M. Actin enhances the activation of human neutrophil NADPH oxidase in a cell-free system. Biochem. Biophys. Res. Commun. 230, 206–210 (1997).

    CAS  PubMed  Google Scholar 

  189. Usatyuk, P. V. et al. Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. J. Biol. Chem. 282, 23284–23295 (2007).

    CAS  PubMed  Google Scholar 

  190. Pankov, R. et al. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Millius, A., Watanabe, N. & Weiner, O. D. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. J. Cell Sci. 125, 1165–1176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Heider, M. R. & Munson, M. Exorcising the exocyst complex. Traffic 13, 898–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Parrini, M. C. et al. SH3BP1, an exocyst-associated RhoGAP, inactivates Rac1 at the front to drive cell motility. Mol. Cell 42, 650–661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Endris, V. et al. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J. Cell Sci. 124, 3941–3955 (2011).

    CAS  PubMed  Google Scholar 

  195. Soderling, S. H. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biol. 4, 970–975 (2002).

    CAS  PubMed  Google Scholar 

  196. Suetsugu, S. & Gautreau, A. Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol. 22, 141–150 (2012).

    CAS  PubMed  Google Scholar 

  197. Yamazaki, D., Itoh, T., Miki, H. & Takenawa, T. srGAP1 regulates lamellipodial dynamics and cell migratory behavior by modulating Rac1 activity. Mol. Biol. Cell 24, 3393–3405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Allard, J. & Mogilner, A. Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25, 107–115 (2013).

    CAS  PubMed  Google Scholar 

  199. Ryan, G. L., Watanabe, N. & Vavylonis, D. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton 69, 195–206 (2012).

    CAS  PubMed  Google Scholar 

  200. Xiong, Y., Huang, C. H., Iglesias, P. A. & Devreotes, P. N. Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc. Natl Acad. Sci. USA 107, 17079–17086 (2010). This paper reports the so-called LEGI-BEN model of cell migration, which is a major model accounting for chemotactic behaviour. It explains in particular how cells are intrinsically able to maintain a polarized state associated with directional persistence through the propagation of waves, which involves positive feedback and an inhibitor, and how this ability is biased in chemotaxis to obtain accurate directionality.

    CAS  PubMed  Google Scholar 

  201. Bugyi, B. & Carlier, M. F. Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010).

    CAS  PubMed  Google Scholar 

  202. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    CAS  PubMed  Google Scholar 

  203. Carlier, M. F., Husson, C., Renault, L. & Didry, D. Control of actin assembly by the WH2 domains and their multifunctional tandem repeats in Spire and Cordon-Bleu. Int. Rev. Cell Mol. Biol. 290, 55–85 (2011).

    CAS  PubMed  Google Scholar 

  204. Qualmann, B. & Kessels, M. M. New players in actin polymerization—WH2-domain-containing actin nucleators. Trends Cell Biol. 19, 276–285 (2009).

    CAS  PubMed  Google Scholar 

  205. Chesarone, M. A. & Goode, B. L. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28–37 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Morishige, M. et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nature Cell Biol. 10, 85–92 (2008).

    CAS  PubMed  Google Scholar 

  207. Haines, E., Saucier, C. & Claing, A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J. Biol. Chem. 289, 5687–5703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by grants from BBSRC (BB/G00319X/1; BB/F011431/1; BB/J000590/1) (M.K.), Wellcome Trust (077429/Z/05/Z; 082907/Z/07/Z) (M.K.), Agence Nationale de la Recherche (A.G.), Institut National du Cancer (A.G.) and Association pour la Recherche sur le Cancer (A.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Krause or Alexis Gautreau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

Further information

Cell Migration Gateway

Glossary

Integrin

A member of a large family of transmembrane proteins, which exist in the plasma membrane as heterodimers of α- and β-subunits and mediate the interaction of cells with the extracellular matrix.

Invadopodia

Invasive protrusions of tumour cells that locally secrete proteases to degrade the extracellular matrix, which thereby enables them to penetrate the basement membrane.

Blebs

Outward membrane bulges that form owing to weakening of the actin cortex and high intracellular pressure.

Lamellipodium persistence

Characteristic time during which a lamellipodium persists.

WCA domain

The carboxy-terminal domain of nucleation-promoting factors that activate the actin-related protein 2/3 (ARP2/3) complex and delivers the first actin molecule of the branched junction.

Liposomes

Artificial lipid membranes that form vesicles.

Prenylated

When a protein is conjugated to a fatty acid (prenyl group) that anchors proteins to membranes.

BAR domain

A conserved protein domain that forms a banana-shaped dimer, which senses curved membranes or induces curvature corresponding to its shape.

Trans-Golgi network

(TGN). A compartment of the Golgi apparatus from which various post-Golgi vesicles are generated.

Guanine nucleotide exchange factor

(GEF). A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a small GTP-binding protein.

Exocyst complex

A dynamic complex of proteins that permit the polarized tethering of post-Golgi vesicles to the plasma membrane.

PH domain

(Pleckstrin homology domain). A small signal transduction domain that binds to phosphoinositide lipids in membranes.

Barbed end

The most dynamic end of an actin filament, which is usually elongated.

Guided migration

Migration that is biased by external cues.

FH1 and FH2 domains

The two characteristic formin homology domains of formins. FH1 associates with, and delivers profilin–actin to, FH2 dimers that promote elongation of actin filaments by staying associated with barbed ends.

Random migration

Migration that is not biased by external cues.

Cell translocation

Active displacement of cells.

Fluorescence recovery after photobleaching

(FRAP). A method by which one localized pool of fluorescent proteins is rendered non-fluorescent by high-energy illumination. The way in which fluorescence recovers gives an indication of the exchange rates (flow) of the remaining fluorescent molecules. This flow cannot be seen in the steady-state distribution of fluorescent proteins.

WD40 repeat

A protein motif composed of a 40-amino-acid repeat that forms a blade of a characteristic β-propeller structure.

Directional persistence

Characteristic time during which cells sustain their migration in one direction. Directional persistence is a descriptor, like cell speed, of all kinds of cell migration, even random migration.

Directionality

The orientation of cell migration. This parameter is important in guided migration but not in random migration. Directionality should not be confused with directional persistence.

Microtubule-organizing centre

A large macromolecular assembly that nucleates and tethers microtubules.

GTPase-activating proteins

(GAPs). Proteins that inactivate small GTP-binding proteins by increasing their rate of GTP hydrolysis.

F-BAR domain

A special type of BAR domain that is located at the amino terminus of proteins and which usually senses or induces invaginations of the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, M., Gautreau, A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15, 577–590 (2014). https://doi.org/10.1038/nrm3861

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing