Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polo-like kinases: structural variations lead to multiple functions

Key Points

  • Polo-like kinases (PLKs) are a family of Ser/Thr kinases that have a pivotal role in cell cycle progression, the centrosome cycle, mitosis and cellular responses to DNA damage, which makes them attractive targets for treatments against several diseases.

  • PLK1 is the most ancestral and best-conserved member of the family; it is found in most eukaryotic organisms, except for higher land plants. PLK4 is the most divergent member of the family. PLK2, PLK3 and PLK5 have evolved very recently, probably from a PLK1 gene duplication in vertebrates.

  • PLK1 and PLK4 have distinct structural organizations and are phosphorylated at different residues, which correlate with different mode of actions. The amino-terminal kinase domain and carboxy-terminal polo box domains that characterize PLKs are crucial for regulation of their kinase catalytic activity in time and space, and for controlling subcellular PLK localization.

  • Recent studies show non-canonical functions for PLKs in asymmetric cell division and cilia disassembly.

  • PLKs function in centriole and centrosome biogenesis; PLK1 integrates various external stimuli with cell cycle inputs to coordinate mitotic progression and the centrosome cycle, whereas PLK4 drives centriole assembly.

  • PLK2 and PLK3 have roles in DNA replication and in the DNA damage response and are also expressed in non-proliferative tissues, in which they have a role in cell differentiation and homeostasis (for example, PLK2 and PLK5 regulate neuronal activity).

Abstract

Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization of structural domains regulates the function of PLKs.
Figure 2: PLK4 has a key role in a conserved pathway of centriole biogenesis.
Figure 3: Schematic presentation of PLK functions and localizations during the mammalian cell cycle.
Figure 4: PLK1 functions in mitotic entry and G2/M checkpoint.
Figure 5: PLK1 functions during spindle assembly, mitotic exit and cytokinesis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Archambault, V. & Glover, D. M. Polo-like kinases: conservation and divergence in their functions and regulation. Nature Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  Google Scholar 

  2. Carvalho-Santos, Z. et al. Stepwise evolution of the centriole-assembly pathway. J. Cell Sci. 123, 1414–1426 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. de Carcer, G., Manning, G. & Malumbres, M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10, 2255–2262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003). Presents the first crystal structure of PBD of human PLK1 and shows that it comprises two PBs with very similar tertiary structures. Also describes the mechanism of phophopeptide binding to the PBD.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, K. Y., Lowe, E. D., Sinclair, J., Nigg, E. A. & Johnson, L. N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elia, A. E., Cantley, L. C. & Yaffe, M. B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kothe, M. et al. Structure of the catalytic domain of human polo-like kinase 1. Biochemistry 46, 5960–5971 (2007). Shows the first crystal structure of the catalytic domain of human PLK1, which contributes to discovery of the mode of action of the kinase domain by understanding the implications of residues that are present in the T-loop.

    Article  CAS  PubMed  Google Scholar 

  8. Park, J. E. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci. 67, 1957–1970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jana, S. C., Bazan, J. F. & Bettencourt-Dias, M. Polo boxes come out of the crypt: a new view of PLK function and evolution. Structure 20, 1801–1804 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Sillibourne, J. E. & Bornens, M. Polo-like kinase 4: the odd one out of the family. Cell Div. 5, 25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Archambault, V. & Carmena, M. Polo-like kinase-activating kinases: Aurora A, Aurora B and what else? Cell Cycle 11, 1490–1495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruinsma, W., Raaijmakers, J. A. & Medema, R. H. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem. Sci. 37, 534–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, J., Shen, C., Wang, T. & Quan, J. Structural basis for the inhibition of Polo-like kinase 1. Nature Struct. Mol. Biol. 20, 1047–1053 (2013). Proposes a mechanism of PLK1 autoinhibition and its stabilization through Map205 binding, generated by solving the crystal structures of a trimer consisting of the polo-binding domain of Map205, PLK1 and PBDs.

    Article  CAS  Google Scholar 

  14. Archambault, V., D'Avino, P. P., Deery, M. J., Lilley, K. S. & Glover, D. M. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev. 22, 2707–2720 (2008). Shows a phosphopriming-independent interaction of Polo with Map205, which inhibits Polo and sequesters it to the microtubules. This sequestration can be relieved by the activity of Cdk1 at the entry to mitosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slevin, L. K. et al. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 20, 1905–1917 (2012). Solves the crystal structure of the PLK4 CPB, which reveals two tandem homodimerized PBs, PB1–PB2, and proposes a unique mechanism of PLK4 homodimerization and its function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D. & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223–3233 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, T. S. et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl Acad. Sci. USA 110, E4849–4857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leung, G. C. et al. The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nature Struct. Biol. 9, 719–724 (2002). Shows the tertiary structure of the PLK4 PB and that, in contrast to PLK1, PLK4 has an intertwined C-terminal PB (PB3) that homodimerizes.

    Article  CAS  PubMed  Google Scholar 

  22. Guderian, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation. J. Cell Sci. 123, 2163–2169 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lettman, M. M. et al. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell 25, 284–298 (2013). Shows that ZYG-1 recruits SAS-6 to the mother centriole in a catalytic-domain-independent manner; kinase activity is subsequently required for cartwheel assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reichert, N. et al. Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol. Cell. Biol. 30, 2896–2908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Winkles, J. A. & Alberts, G. F. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24, 260–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Fischer, M., Quaas, M., Wintsche, A., Muller, G. A. & Engeland, K. Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Res. 42, 163–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ledoux, A. C. et al. NFκB regulates expression of Polo-like kinase 4. Cell Cycle 12, 3052–3062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrysik, Z. et al. The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res. 38, 2931–2943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valenti, F. et al. Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle 10, 4330–4340 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004). Identifies the D-box in PLK1 and shows that it is required for degradation through the APC/C of PLK1 in anaphase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mulvihill, D. P., Petersen, J., Ohkura, H., Glover, D. M. & Hagan, I. M. Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol. Biol. Cell 10, 2771–2785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lera, R. F. & Burkard, M. E. High mitotic activity of Polo-like kinase 1 is required for chromosome segregation and genomic integrity in human epithelial cells. J. Biol. Chem. 287, 42812–42825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cunha-Ferreira, I. et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19, 43–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Rogers, G. C., Rusan, N. M., Roberts, D. M., Peifer, M. & Rogers, S. L. The, S. C. F. Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell Biol. 184, 225–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sillibourne, J. E. et al. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol. Biol. Cell 21, 547–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holland, A. J. et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684–2689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cunha-Ferreira, I. et al. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr. Biol. 23, 2245–2254 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Holland, A. J., Lan, W., Niessen, S., Hoover, H. & Cleveland, D. W. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188, 191–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klebba, J. E. et al. Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr. Biol. 23, 2255–2261 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Brownlee, C. W., Klebba, J. E., Buster, D. W. & Rogers, G. C. The protein phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. J. Cell Biol. 195, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song, M. H., Liu, Y., Anderson, D. E., Jahng, W. J. & O'Connell, K. F. Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C. elegans by controlling the levels of centriole assembly factors. Dev. Cell 20, 563–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peel, N., Dougherty, M., Goeres, J., Liu, Y. & O'Connell, K. F. The C. elegans F-box proteins LIN-23 and SEL-10 antagonize centrosome duplication by regulating ZYG-1 levels. J. Cell Sci. 125, 3535–3544 (2012). Reports, together with references 22, 34 and 35, that PLK4 targets itself for degradation through the 26S proteosome via ubiquitylation mediated by the SCF components Slimb, βTrCP or LIN-23 in D. melanogaster , human cells and C. elegans , respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol. 8, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, C. K., Ozlu, N., Coughlin, M., Steen, J. J. & Mitchison, T. J. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis. Mol. Biol. Cell 23, 2702–2711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beck, J. et al. Ubiquitylation-dependent localization of PLK1 in mitosis. Nature Cell Biol. 15, 430–439 (2013). Shows that CUL3–KLHL22-mediated non-proteolytic ubiquitylation leads to the removal of PLK1 from kinetochores.

    Article  CAS  PubMed  Google Scholar 

  48. Cizmecioglu, O., Warnke, S., Arnold, M., Duensing, S. & Hoffmann, I. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain. Cell Cycle 7, 3548–3555 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Zimmerman, W. C. & Erikson, R. L. Polo-like kinase 3 is required for entry into S phase. Proc. Natl Acad. Sci. USA 104, 1847–1852 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zimmerman, W. C. & Erikson, R. L. Finding Plk3. Cell Cycle 6, 1314–1318 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, Q. et al. Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol. Cell. Biol. 22, 3450–3459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hudson, J. W. et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J. & O'Connell, K. F. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Franck, N. et al. CDK11p58 is required for centriole duplication and Plk4 recruitment to mitotic centrosomes. PLoS ONE 6, e14600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daub, H. et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31, 438–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kelm, O., Wind, M., Lehmann, W. D. & Nigg, E. A. Cell cycle-regulated phosphorylation of the Xenopus polo-like kinase Plx1. J. Biol. Chem. 277, 25247–25256 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Bruinsma, W., Macurek, L., Freire, R., Lindqvist, A. & Medema, R. H. Bora and Aurora-A continue to activate Plk1 in mitosis. J. Cell Sci. 127, 801–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ellinger-Ziegelbauer, H. et al. Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells. Genes Cells 5, 491–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. van de Weerdt, B. C. et al. Uncoupling anaphase-promoting complex/cyclosome activity from spindle assembly checkpoint control by deregulating polo-like kinase 1. Mol. Cell. Biol. 25, 2031–2044 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Macurek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008) Shows, together with reference 61, activation-dependent phosphorylation of human PLK1 at its T-loop by Aurora A kinase at mitotic entry, during recovery from the DNA damage checkpoint and in an unperturbed cell cycle.

    Article  CAS  PubMed  Google Scholar 

  63. Noatynska, A., Panbianco, C. & Gotta, M. SPAT-1/Bora acts with Polo-like kinase 1 to regulate PAR polarity and cell cycle progression. Development 137, 3315–3325 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Halova, L. & Petersen, J. Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo. J. Cell Sci. 124, 3441–3449 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Mortensen, E. M., Haas, W., Gygi, M., Gygi, S. P. & Kellogg, D. R. Cdc28-dependent regulation of the Cdc5/Polo kinase. Curr. Biol. 15, 2033–2037 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Qian, Y. W., Erikson, E. & Maller, J. L. Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol. Cell. Biol. 19, 8625–8632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carmena, M. et al. The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol. 10, e1001250 (2012). Shows that Aurora B kinase phosphorylates the T-loop of Polo at the centromere in early mitosis, and that this is crucial for Polo function at kinetochores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chiyoda, T. et al. LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression. J. Cell Biol. 197, 625–641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamashiro, S. et al. Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1. Dev. Cell 14, 787–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kachaner, D. et al. Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression. Mol. Cell 45, 553–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Bonner, A. M. et al. Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains. Proc. Natl Acad. Sci. USA 110, E1222–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiang, Y. et al. The inhibition of polo kinase by matrimony maintains G2 arrest in the meiotic cell cycle. PLoS Biol. 5, e323 (2007). Identifies a developmentally regulated stoichiometric inhibitor of Polo in D. melanogaster oogenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Whitfield, Z. J., Chisholm, J., Hawley, R. S. & Orr-Weaver, T. L. A meiosis-specific form of the APC/C promotes the oocyte-to-embryo transition by decreasing levels of the Polo kinase inhibitor matrimony. PLoS Biol. 11, e1001648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rozeboom, A. M. & Pak, D. T. Identification and functional characterization of polo-like kinase 2 autoregulatory sites. Neuroscience 202, 147–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura, T., Saito, H. & Takekawa, M. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nature Commun. 4, 1775 (2013).

    Article  CAS  Google Scholar 

  76. Pines, J. & Hagan, I. The renaissance or the cuckoo clock. Phil. Trans. R. Soc. B 366, 3625–3634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330, 1670–1673 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Gharbi-Ayachi, A. et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330, 1673–1677 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Kumagai, A. & Dunphy, W. G. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe, N. et al. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc. Natl Acad. Sci. USA 102, 11663–11668 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. & Nishida, E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410, 215–220 (2001). Reports that cyclin B1 is also phosphorylated by PLK1 in prophase at centrosomes, and that this modification is thought to contribute to CDK1–cyclin B1 activation.

    Article  CAS  PubMed  Google Scholar 

  82. Yata, K. et al. Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell 45, 371–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grallert, A. et al. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nature Cell Biol. 15, 88–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Hagan, I. M. & Grallert, A. Spatial control of mitotic commitment in fission yeast. Biochem. Soc. Trans. 41, 1766–1771 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Petersen, J. & Hagan, I. M. Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature 435, 507–512 (2005). Shows how regulation of Plo1 by stress-activated MAPK cascades modulates the cell cycle to match the rate of division with nutrient availability and stress.

    Article  CAS  PubMed  Google Scholar 

  86. Kishi, K., van Vugt, M. A., Okamoto, K., Hayashi, Y. & Yaffe, M. B. Functional dynamics of Polo-like kinase 1 at the centrosome. Mol. Cell. Biol. 29, 3134–3150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Teixido-Travesa, N., Roig, J. & Luders, J. The where, when and how of microtubule nucleation — one ring to rule them all. J. Cell Sci. 125, 4445–4456 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Luders, J., Patel, U. K. & Stearns, T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biol. 8, 137–147 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. Teixido-Travesa, N. et al. The γTuRC revisited: a comparative analysis of interphase and mitotic human γTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 21, 3963–3972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Santamaria, A. et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol. Biol. Cell 18, 4024–4036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Graser, S., Stierhof, Y. D. & Nigg, E. A. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321–4331 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Sdelci, S. et al. Nek9 phosphorylation of NEDD1/GCP-WD contributes to Plk1 control of γ-tubulin recruitment to the mitotic centrosome. Curr. Biol. 22, 1516–1523 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Haren, L., Stearns, T. & Luders, J. Plk1-dependent recruitment of γ-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Santamaria, A. et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 10, M110.004457 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lee, K. & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27–33 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mardin, B. R., Agircan, F. G., Lange, C. & Schiebel, E. Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr. Biol. 21, 1145–1151 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Mardin, B. R. et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nature Cell Biol. 12, 1166–1176 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Smith, E. et al. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J. 30, 2233–2245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, W. J., Soni, R. K., Uryu, K. & Tsou, M. F. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193, 727–739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Loncarek, J., Hergert, P. & Khodjakov, A. Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277–1282 (2010). Shows, together with reference 103, the role of PLK1 in centriole disengagement and in licensing of centriole duplication in cycling and arrested cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hatano, T. & Sluder, G. The interrelationship between APC/C and Plk1 activities in centriole disengagement. Biol. Open 1, 1153–1160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Prosser, S. L., Samant, M. D., Baxter, J. E., Morrison, C. G. & Fry, A. M. Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. J. Cell Sci. 125, 5353–5368 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Cabral, G., Sans, S. S., Cowan, C. R. & Dammermann, A. Multiple mechanisms contribute to centriole separation in C. elegans. Curr. Biol. 23, 1380–1387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  110. Abe, S. et al. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 25, 863–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, N., Panigrahi, A. K., Mao, Q. & Pati, D. Interaction of sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion. J. Biol. Chem. 286, 41826–41837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kang, Y. H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kang, Y. H. et al. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J. Biol. Chem. 286, 19744–19757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maia, A. R. et al. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J. Cell Biol. 199, 285–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ghenoiu, C., Wheelock, M. S. & Funabiki, H. Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol. Cell 52, 734–745 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, L., Tian, X., Zhu, C., Wang, F. & Higgins, J. M. Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep. 15, 273–281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Elowe, S., Hummer, S., Uldschmid, A., Li, X. & Nigg, E. A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, H. et al. Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments. EMBO J. 29, 2953–2965 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, D., Davydenko, O. & Lampson, M. A. Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J. Cell Biol. 198, 491–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nature Cell Biol. 13, 1265–1271 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Suijkerbuijk, S. J., Vleugel, M., Teixeira, A. & Kops, G. J. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev. Cell 23, 745–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Kruse, T. et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J. Cell Sci. 126, 1086–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, J. Q. & Kornbluth, S. Across the meiotic divide — CSF activity in the post-Emi2/XErp1 era. J. Cell Sci. 121, 3509–3514 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Ohkura, H., Hagan, I. M. & Glover, D. M. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9, 1059–1073 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, K. S. & Erikson, R. L. Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol. Cell. Biol. 17, 3408–3417 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carmena, M. et al. Drosophila polo kinase is required for cytokinesis. J. Cell Biol. 143, 659–671 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. He, R. et al. Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization. J. Biol. Chem. 288, 14384–14390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. van Vugt, M. A. & Medema, R. H. Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24, 2844–2859 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol. 9, 436–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Petronczki, M., Glotzer, M., Kraut, N. & Peters, J. M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell 12, 713–725 (2007). Uses, together with references 90 and 91, small- molecule inhibitors to study the essential role of PLK1 for the initiation of cytokinesis in human cells.

    Article  CAS  PubMed  Google Scholar 

  131. Brennan, I. M., Peters, U., Kapoor, T. M. & Straight, A. F. Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS ONE 2, e409 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yoshida, S. et al. Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313, 108–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Hu, C. K., Coughlin, M. & Mitchison, T. J. Midbody assembly and its regulation during cytokinesis. Mol. Biol. Cell 23, 1024–1034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hasegawa, H. et al. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J. Cell Sci. 126, 3627–3637 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Bastos, R. N. & Barr, F. A. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Song, B., Liu, X. S. & Liu, X. Polo-like kinase 1 (Plk1): an unexpected player in DNA replication. Cell Div. 7, 3 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mandal, R. & Strebhardt, K. Plk1: unexpected roles in DNA replication. Cell Res. 23, 1251–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hardy, C. F. & Pautz, A. A novel role for Cdc5p in DNA replication. Mol. Cell. Biol. 16, 6775–6782 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu, Z. Q. & Liu, X. Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc. Natl Acad. Sci. USA 105, 1919–1924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ohta, M., Sato, M. & Yamamoto, M. Spindle pole body components are reorganized during fission yeast meiosis. Mol. Biol. Cell 23, 1799–1811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jaspersen, S. L. & Hawley, R. S. Meiotic pairing as a polo match. Dev. Cell 21, 805–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Pek, J. W., Ng, B. F. & Kai, T. Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in Drosophila. Development 139, 4505–4513 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Sourirajan, A. & Lichten, M. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22, 2627–2632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jordan, P. W., Karppinen, J. & Handel, M. A. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J. Cell Sci. 125, 5061–5072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Attner, M. A., Miller, M. P., Ee, L. S., Elkin, S. K. & Amon, A. Polo kinase Cdc5 is a central regulator of meiosis I. Proc. Natl Acad. Sci. USA 110, 14278–14283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kakui, Y., Sato, M., Okada, N., Toda, T. & Yamamoto, M. Microtubules and Alp7-Alp14 (TACC-TOG) reposition chromosomes before meiotic segregation. Nature Cell Biol. 15, 786–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Li, R. The art of choreographing asymmetric cell division. Dev. Cell 25, 439–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, H., Ouyang, Y., Somers, W. G., Chia, W. & Lu, B. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449, 96–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Januschke, J. et al. Centrobin controls mother–daughter centriole asymmetry in Drosophila neuroblasts. Nature Cell Biol. 15, 241–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Lerit, D. A., Smyth, J. T. & Rusan, N. M. Organelle asymmetry for proper fitness, function, and fate. Chromosome Res. 21, 271–286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Budirahardja, Y. & Gonczy, P. PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development 135, 1303–1313 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Nishi, Y., Rogers, E., Robertson, S. M. & Lin, R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135, 687–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Takaki, T., Trenz, K., Costanzo, V. & Petronczki, M. Polo-like kinase 1 reaches beyond mitosis — cytokinesis, DNA damage response, and development. Curr. Opin. Cell Biol. 20, 650–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nature Cell Biol. 14, 311–317 (2012). Shows that PLK1 controls spindle positioning through the regulation of dynein localization.

    Article  CAS  PubMed  Google Scholar 

  155. Zhu, M. et al. MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J. Cell Biol. 200, 773–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pan, J. & Snell, W. The primary cilium: keeper of the key to cell division. Cell 129, 1255–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Soung, N. K. et al. Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev. Cell 16, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, G. et al. PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J. Cell Sci. 126, 1355–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Lee, K. H. et al. Identification of a novel Wnt5a-CK1ɛ-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J. 31, 3104–3117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Seeger-Nukpezah, T. et al. The centrosomal kinase Plk1 localizes to the transition zone of primary cilia and induces phosphorylation of nephrocystin-1. PLoS ONE 7, e38838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Villegas, E. et al. Plk2 regulates mitotic spindle orientation and mammary gland development. Development 141, 1562–1571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xu, D., Yao, Y., Lu, L., Costa, M. & Dai, W. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem. 285, 38944–38950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, L., Gao, J., Dai, W. & Lu, L. Activation of Polo-like kinase 3 by hypoxic stresses. J. Biol. Chem. 283, 25928–25935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xie, S. et al. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 1, 424–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, L., Payton, R., Dai, W. & Lu, L. Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells. J. Biol. Chem. 286, 1951–1958 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Lopez-Sanchez, I., Sanz-Garcia, M. & Lazo, P. A. Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol. Cell. Biol. 29, 1189–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Ruan, Q. et al. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp. Cell Res. 294, 51–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Xie, S. et al. MEK1-induced Golgi dynamics during cell cycle progression is partly mediated by Polo-like kinase-3. Oncogene 23, 3822–3829 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biol. 7, 1140–1146 (2005). Demonstrates, together with reference 170, that PLK4 is a master regulator of centriole duplication in D. melanogaster and human cells.

    Article  CAS  PubMed  Google Scholar 

  172. O'Connell, K. F. et al. The C. elegans ZYG-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D. M. & Bettencourt-Dias, M. Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Eckerdt, F., Yamamoto, T. M., Lewellyn, A. L. & Maller, J. L. Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr. Biol. 21, 428–432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hoh, R. A., Stowe, T. R., Turk, E. & Stearns, T. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLoS ONE 7, e52166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Coelho, P. A. et al. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev. Cell 27, 586–597 (2013). Shows a new role for PLK4 in the regulation of microtubules, which is independent of centriole presence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bahtz, R. et al. GCP6 is a substrate of Plk4 and required for centriole duplication. J. Cell Sci. 125, 486–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Warnke, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14, 1200–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Chang, J., Cizmecioglu, O., Hoffmann, I. & Rhee, K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395–2406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cizmecioglu, O. et al. Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J. Cell Sci. 125, 981–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Ma, S., Charron, J. & Erikson, R. L. Role of Plk2 (Snk) in mouse development and cell proliferation. Mol. Cell. Biol. 23, 6936–6943 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Juan, G. & Cordon-Cardo, C. Intranuclear compartmentalization of cyclin E during the cell cycle: disruption of the nucleoplasm-nucleolar shuttling of cyclin E in bladder cancer. Cancer Res. 61, 1220–1226 (2001).

    CAS  PubMed  Google Scholar 

  185. Cazzalini, O. et al. Intracellular localization of the cyclin-dependent kinase inhibitor p21CDKN1A-GFP fusion protein during cell cycle arrest. Histochem. Cell Biol. 121, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, S. H., Li, C. & Maller, J. L. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev. Biol. 212, 381–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Bahassi el, M., Hennigan, R. F., Myer, D. L. & Stambrook, P. J. Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 23, 2658–2663 (2004).

    Article  PubMed  CAS  Google Scholar 

  188. Shimizu-Yoshida, Y. et al. Radiation-inducible hSNK gene is transcriptionally regulated by p53 binding homology element in human thyroid cells. Biochem. Biophys. Res. Commun. 289, 491–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell. Biol. 23, 5556–5571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Smith, P., Syed, N. & Crook, T. Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for Polo-like kinase 2 but not Polo-like kinase 3. Cell Cycle 5, 1262–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Xie, S. et al. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem. 276, 43305–43312 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Bahassi el, M. et al. Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21, 6633–6640 (2002).

    Article  PubMed  CAS  Google Scholar 

  193. Bahassi el, M., Myer, D. L., McKenney, R. J., Hennigan, R. F. & Stambrook, P. J. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat. Res. 596, 166–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Myer, D. L. et al. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat. Res. 714, 1–10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yang, Y. et al. Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1α under hypoxic conditions. Cancer Res. 68, 4077–4085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pak, D. T. & Sheng, M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302, 1368–1373 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Oueslati, A., Schneider, B. L., Aebischer, P. & Lashuel, H. A. Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc. Natl Acad. Sci. USA 110, E3945–3954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Novak, B., Kapuy, O., Domingo-Sananes, M. R. & Tyson, J. J. Regulated protein kinases and phosphatases in cell cycle decisions. Curr. Opin. Cell Biol. 22, 801–808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Karpov, P. A. et al. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. BMC Genomics 11, (Suppl. 1), S14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Liu, B., Ho, C. M. & Lee, Y. R. Microtubule reorganization during mitosis and cytokinesis: lessons learned from developing microgametophytes in Arabidopsis thaliana. Front. Plant Sci. 2, 27 (2011).

    PubMed  PubMed Central  Google Scholar 

  201. Hammarton, T. C., Kramer, S., Tetley, L., Boshart, M. & Mottram, J. C. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol. Microbiol. 65, 1229–1248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lozano-Nunez, A., Ikeda, K. N., Sauer, T. & de Graffenried, C. L. An analogue-sensitive approach identifies basal body rotation and flagellum attachment zone elongation as key functions of PLK in Trypanosoma brucei. Mol. Biol. Cell 24, 1321–1333 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hodges, M. E., Scheumann, N., Wickstead, B., Langdale, J. A. & Gull, K. Reconstructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123, 1407–1413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. van de Weerdt, B. C. et al. Polo-box domains confer target specificity to the Polo-like kinase family. Biochim. Biophys. Acta 1783, 1015–1022 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Jana, S. C., Marteil, G. & Bettencourt-Dias, M. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr. Opin. Cell Biol. 26, 96–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Delattre, M., Canard, C. & Gonczy, P. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Puklowski, A. et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nature Cell Biol. 13, 1004–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Chan, E. H., Santamaria, A., Sillje, H. H. & Nigg, E. A. Plk1 regulates mitotic Aurora A function through βTrCP-dependent degradation of hBora. Chromosoma 117, 457–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Petronczki, J. R. Hutchins, I. Hoffmann, V. Archambault, I. Hagan, J. Loncarek and D. Glover for critical reading of the manuscript. The authors apologize to colleagues whose publications were not cited owing to space limitations. The Cell Cycle Regulation laboratory (CCR) and M.B.-D. are supported by an European Molecular Biology Organization (EMBO) installation grant, a European Research Council (ERC) grant and grants from the Fundação para a Ciência e a Tecnologia (FCT): HMSP-CT/SAU-ICT/0075/2009, PTDC/BIA-BCM/105602/2008, PTDC/BIA-BCM/112736/2009 and PTDC/SAU-OBD/105616/2008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sihem Zitouni or Mónica Bettencourt-Dias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (Box)

Deregulation of Polo-like kinases in human cancer. (PDF 821 kb)

PowerPoint slides

Glossary

Cyclin-dependent kinases

(CDKs). A family of Ser/Thr kinases that have major roles in the regulation of the cell cycle. CDKs bind to their regulatory subunits, the cyclins, the concentrations of which oscillate throughout the cell cycle, which regulates CDK activity.

T-loop

A conserved structural loop in the catalytic domain of protein kinases. Phosphorylation of specific residues in the T-loop is usually required for activation of the kinase.

Phosphomimetic mutants

Mutants with altered phosphorylation sites, in which an amino acid is replaced by a phosphomimetic residue that confers a constitutively phosphorylated state to the protein. In general, Ser and Thr residues are altered to Asp or Glu residues, whereas Tyr is replaced by Glu.

SCF

A multisubunit ubiquitin ligase complex that targets proteins for degradation by the proteasome. It is composed of S phase kinase-associated protein 1 (SKP1), a member of the cullin family, a RING-finger-containing protein and an F-box-containing protein, which specifically recognizes target substrates. SCF-mediated ubiquitylation is often dependent on previous phosphorylation of its substrates at a specific degron.

Kinetochores

Protein complexes that assemble at the centromere during cell division, attach chromosomes to the microtubules of the mitotic spindle and regulate sister-chromatid separation.

Midbody

A transient proteinaceous structure that forms the cytoplasmic bridge that physically links two daughter cells at the end of cytokinesis. Its main function is localization to the site of abscission.

Spindle pole bodies

(SBP). Microtubule-organizing centres without centrioles in yeast. They are functionally equivalent to the animal centrosome.

Centromeres

Specific regions of chromosomes where the sister chromatids are tightly joined, by cohesin, and where the kinetochore is assembled.

Pericentriolar material

(PCM). A structured protein network surrounding centrioles that promotes the nucleation of microtubules.

γ-tubulin ring complex

(γTuRC). An assembly of γ-tubulin and several associated proteins that forms a structure involved in microtubule nucleation. This complex is typically found in microtubule organizing centres, which function as scaffolds for the polymerization of α-tubulin–β-tubulin dimers.

Cohesin

A ring-like protein complex that holds sister chromatids together after their replication. It is released or cleaved in a regulated manner in mitosis and meiosis, which ensures accurate chromosome segregation.

Abscission

The physical separation of two daughter cells at the completion of cytokinesis.

PAR complex

(Partition complex). A protein complex with conserved function in establishing cell polarity. It is important in asymmetric cell division and can also be involved in oncogenic signalling pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, S., Nabais, C., Jana, S. et al. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 15, 433–452 (2014). https://doi.org/10.1038/nrm3819

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing