Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The amyloid state and its association with protein misfolding diseases

A Corrigendum to this article was published on 12 June 2014

This article has been updated

Key Points

  • The phenomenon of amyloid formation is associated with protein misfolding disorders, including Alzheimer's disease, Parkinson's disease and type II diabetes.

  • The amyloid state is a 'generic state' of proteins and its study can provide great insight into the nature of functional structures and into that of disease-related assemblies.

  • A multitude of quality control, or 'housekeeping', mechanisms exist in living organisms to prevent the conversion of normally soluble proteins into the aberrant amyloid state and to maintain protein homeostasis.

  • The failure of these quality control mechanisms can give rise to 'protein metastasis', the uncontrolled conversion of these molecules into aberrant self-propagating assemblies that ultimately lead to a cascade of cytotoxic processes.

  • Our increasing ability to monitor and characterize the molecular structures and formation mechanisms of the protein species that are involved in amyloid formation is suggesting novel strategies to treat or prevent protein misfolding disorders.

  • Ultimately, the results of this field of research will result in great changes in the way we are able to manage modern lifestyles and maintain healthy ageing.

Abstract

The phenomenon of protein aggregation and amyloid formation has become the subject of rapidly increasing research activities across a wide range of scientific disciplines. Such activities have been stimulated by the association of amyloid deposition with a range of debilitating medical disorders, from Alzheimer's disease to type II diabetes, many of which are major threats to human health and welfare in the modern world. It has become clear, however, that the ability to form the amyloid state is more general than previously imagined, and that its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A protein can exist in various different states.
Figure 2: Generic features of the amyloid structure.
Figure 3: Structure of an amyloid fibril at atomic resolution.

Similar content being viewed by others

Change history

  • 12 June 2014

    In the legend of figure 2 of the above article (page 388), the sentence “The spacing between polypeptide chains along the fibril axis is constant to a good approximation even for very different polypeptide sequences, a generic property arising from the common inter-side chain hydrogen bonding constraints (orange line in part b).” incorrectly referred to 'inter-side chain' hydrogen bonding constraints, whereas it should have referred to 'inter-main chain' hydrogen bonding constraints. This has been corrected online. The authors apologize for any confusion caused to readers.

References

  1. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy, J. & Selkoe, D. J. Medicine - the amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008). Provides a comprehensive overview of protein homeostasis and of the opportunities for therapeutic intervention that it offers.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Bioch. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  6. Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotech. 6, 469–479 (2011).

    Article  CAS  Google Scholar 

  7. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature Rev. Mol. Cell. Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  8. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019–1031 (2011).

    Article  PubMed  Google Scholar 

  10. Querfurth, H. W. & LaFerla, F. M. Mechanisms of disease Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Ulrich Hartl, F. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Bioch. 82, 323–355 (2013).

    Article  CAS  Google Scholar 

  12. Alzheimer's disease international. World Alzheimer report (2010).

  13. Dementia: A public health priority. World health organization and Alzheimer's disease international (2012).

  14. Olshansky, S. J. et al. A potential decline in life expectancy in the united states in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Alzheimer's disease: Facts and figures. Alzheimer's association (2012).

  16. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen, S. I. A. et al. Proliferation of amyloid-β 42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013). Shows how the rapid proliferation of amyloid aggregates can be catalysed by the surfaces of existing amyloid fibrils.

    Article  CAS  PubMed  Google Scholar 

  19. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nature Chem. Biol. 6, 140–147 (2010).

    Article  CAS  Google Scholar 

  21. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Intraneuronal a β causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 4194–4199 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Koffie, R. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Dobson, C. M. Protein misfolding, evolution and disease. Trends Bioch. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  27. Greenwald, J. & Riek, R. On the possible amyloid origin of protein folds. J. Mol. Biol. 421, 417–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Carny, O. & Gazit, E. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. DePas, W. H. & Chapman, M. R. Microbial manipulation of the amyloid fold. Res. Microbiol. 163, 592–606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid - from bacteria to humans. Trends Bioch. Sci. 32, 217–224 (2007).

    Article  CAS  Google Scholar 

  31. Fandrich, M. & Dobson, C. M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knowles, T. P. J. et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc. Natl Acad. Sci. USA 108, 14746–14751 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Astbury, W. T., Dickinson, S. & Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29, 2351–2360 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kendrew, J. C. et al. 3-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958).

    Article  CAS  PubMed  Google Scholar 

  35. Berman, H. M. et al. The protein data bank. Nucl. Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of g-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anfinsen, C. B. Principles that govern folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Dobson, C. M., Sali, A. & Karplus, M. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. 37, 868–893 (1998).

    Article  Google Scholar 

  41. Baldwin, A. J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011). Demonstrates that native states of proteins are intrinsically metastable against aggregation.

    Article  CAS  PubMed  Google Scholar 

  42. Gazit, E. The “correctly folded” state of proteins: is it a metastable state. Angew. Chem. Int. Ed. 41, 257–259 (2002).

    Article  CAS  Google Scholar 

  43. Vendruscolo, M., Knowles, T. P. J. & Dobson, C. M. Protein solubility and protein homeostasis: A generic view of protein misfolding disorders. Cold Spring Harb. Perspect. Biol. 3, a010454 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wolff, S., Weissman, J. S. & Dillin, A. Differential scales of protein quality control. Cell 157, 52–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nature Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  46. Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. & Dobson, C. M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 127, 476–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hou, L. M. et al. Solution NMR studies of the Aβ(1-40) and Aβ(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126, 1992–2005 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Varadi, M. et al. pE-DB: A database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucl. Acids Res. 42, D326–D335 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Tartaglia, G. G. et al. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol. 380, 425–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Westermark, P. et al. Amyloid fibrils in human insulinoma and islets of langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl Acad. Sci. USA 84, 3881–3885 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Waudby, C. A., Launay, H., Cabrita, L. D. & Christodoulou, J. Protein folding on the ribosome studied using NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 74, 57–75 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins under native conditions. Nature Chem. Biol. 5, 15–22 (2009).

    Article  CAS  Google Scholar 

  56. Kelly, J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Vendruscolo, M. & Dobson, C. M. Structural biology: protein self-assembly intermediates. Nature Chem. Biol. 9, 216–217 (2013).

    Article  CAS  Google Scholar 

  58. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Bioch. 76, 723–749 (2007).

    Article  CAS  Google Scholar 

  59. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meinema, A. C. et al. Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333, 90–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Park, S. H. et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154, 134–145 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Fletcher, D. A. & Mullins, D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Sipe, J. D. & Cohen, A. S. Review: History of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Buxbaum, J. N. & Linke, R. P. A molecular history of the amyloidoses. J. Mol. Biol. 421, 142–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Stefani, M. & Dobson, C. M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Liao, L. et al. Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J. Biol. Chem. 279, 37061–37068 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, Q. et al. Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J. 19, 869–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Xia, Q. et al. Proteomic identification of novel proteins associated with lewy bodies. Front. Biosci. 13, 3850–3856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Fitzpatrick, A. W. P. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Petkova, A. T. et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Wasmer, C. et al. Amyloid fibrils of the HET-s(218-289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Luhrs, T. et al. 3D structure of Alzheimer's amyloid-β(1-42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D. & Dobson, C. M. Amyloid fibril formation by an SH3 domain. Proc. Natl Acad. Sci. USA 95, 4224–4228 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl Acad. Sci. USA 96, 3590–3594 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Urbanc, B. et al. In silico study of amyloid β-protein folding and oligomerization. Proc. Natl Acad. Sci. USA 101, 17345–17350 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Auer, S., Meersman, F., Dobson, C. M. & Vendruscolo, M. A generic mechanism of emergence of amyloid protofilaments from disordered oligomeric aggregates. PLoS Comp. Biol. 4, e1000222 (2008).

    Article  CAS  Google Scholar 

  83. Tycko, R. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62, 279–299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jimenez, J. L. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 9196–9201 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Sachse, C., Fandrich, M. & Grigorieff, N. Paired beta-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy. Proc. Natl Acad. Sci. USA 105, 7462–7466 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Halfmann, R., Alberti, S. & Lindquist, S. Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol. 20, 125–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878–881 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Knowles, T. P. J. et al. Twisting transition between crystalline and fibrillar phases of aggregated peptides. Phys. Rev. Lett. 109, 158101 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Tartaglia, G. G., Pechmann, S., Dobson, C. M. & Vendruscolo, M. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Bioch. Sci. 32, 204–206 (2007).

    Article  CAS  Google Scholar 

  94. Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R. & Anderson, V. E. Secondary structure of α -synuclein oligomers: characterization by Raman and atomic force microscopy. J. Mol. Biol. 355, 63–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Nettleton, E. J. et al. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Bioph. J. 79, 1053–1065 (2000).

    Article  CAS  Google Scholar 

  96. Smith, D. P., Radford, S. E. & Ashcroft, A. E. Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc. Natl Acad. Sci. USA 107, 6794–6798 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chem. 1, 326–331 (2009).

    Article  CAS  Google Scholar 

  98. Narayan, P. et al. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β1–40 peptide. Nature Struct. Mol. Biol. 19, 79–83 (2012).

    Article  CAS  Google Scholar 

  99. Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009). Presents an analytical solution to the kinetic equations that describe protein aggregation, thus providing an effective method to identify the roles of the individual microscopic processes underlying protein aggregation.

    Article  CAS  PubMed  Google Scholar 

  101. ten Wolde, P.R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jucker, M. & Walker, L. C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fandrich, M. Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils. J. Mol. Biol. 365, 1266–1270 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, 1582–1590 (2004).

    Article  CAS  Google Scholar 

  106. Bolognesi, B. et al. Single point mutations induce a switch in the molecular mechanism of the aggregation of the Alzheimer's disease associated Aβ42 peptide. ACS Chem. Biol. 9, 378–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Meier, M. et al. Plug-based microfluidics with defined surface chemistry to miniaturize and control aggregation of amyloidogenic peptides. Angew. Chem. Int. Ed. 121, 1515–1517 (2009).

    Article  Google Scholar 

  108. Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nature Rev. Neurol. 6, 702–706 (2010).

    Article  CAS  Google Scholar 

  109. Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in als. Cell 147, 498–508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cohen, S. et al. Spatial propagation of protein polymerization. Phys. Rev. Lett. 112, 098101 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Aguzzi, A. Cell biology: Beyond the prion principle. Nature 459, 924–925 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Walker, L. C., Diamond, M. I., Duff, K. E. & Hyman, B. T. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70, 304–310 (2013).

    Article  PubMed  Google Scholar 

  115. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Dubay, K. F. et al. Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol. 341, 1317–1326 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotech. 22, 1302–1306 (2004).

    Article  CAS  Google Scholar 

  119. Pawar, A. P. et al. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol. 350, 379–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Neudecker, P. et al. Structure of an intermediate state in protein folding and aggregation. Science 336, 362–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Broome, B. M. & Hecht, M. H. Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis. J. Mol. Biol. 296, 961–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Richardson, J. S. & Richardson, D. C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl Acad. Sci. USA 99, 2754–2759 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Otzen, D. E. & Oliveberg, M. Salt-induced detour through compact regions of the protein folding landscape. Proc. Natl Acad. Sci. USA 96, 11746–11751 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nature Rev. Mol. Cell. Biol. 11, 777–788 (2010).

    Article  CAS  Google Scholar 

  126. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–S17 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morimoto, R. I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Jiang, Q. et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58, 681–693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Knowles, T. P. J. et al. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Natl Acad. Sci. USA 104, 10016–10021 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Xu, L. Q. et al. Influence of specific Hsp70 domains on fibril formation of the yeast prion protein Ure2. Philos. Trans. R. Soc. B 368, 20110410 (2013).

    Article  CAS  Google Scholar 

  136. Wilson, M. R. & Easterbrook-Smith, S. B. Clusterin is a secreted mammalian chaperone. Trends Bioch. Sci. 25, 95–98 (2000).

    Article  CAS  Google Scholar 

  137. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Tomic, J. L., Pensalfini, A., Head, E. & Glabe, C. G. Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiol. Dis. 35, 352–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shankar, G. M. et al. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Palop, J. J. & Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nature Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Luheshi, L. M., Crowther, D. C. & Dobson, C. M. Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol. 12, 25–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Bilen, J. & Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Kaminksi Schierle, G. S. et al. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 133, 12902–12905 (2011).

    Article  CAS  Google Scholar 

  148. McGuire, E. K. et al. Selenium-enhanced electron microscopic imaging of different aggregate forms of a segment of the amyloid beta peptide in cells. ACS Nano 6, 4740–4747 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Ries, J. et al. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 4, 1057–1061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nature Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  Google Scholar 

  152. Lue, L. F. et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853–862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Baglioni, S. et al. Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J. Neurosci. 26, 8160–8167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cheon, M. et al. Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comp. Biol. 3, 1727–1738 (2007).

    Article  CAS  Google Scholar 

  155. Bolognesi, B. et al. ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 5, 735–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Narayan, P. et al. Single molecule characterization of the interactions between amyloid-β peptides and the membranes of hippocampal cells. J. Am. Chem. Soc. 135, 1491–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013). Provides evidence that links protein supersaturation with ageing and neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  159. David, D. C. et al. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gidalevitz, T., Ben-Zvi, A., Ho, K. H., Brignull, H. R. & Morimoto, R. I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006). This work demonstrates how protein homeostasis can be overwhelmed by the additional requests introduced by the presence of folding-defective proteins.

    Article  CAS  PubMed  Google Scholar 

  161. Koga, H., Kaushik, S. & Cuervo, A. M. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res. Rev. 10, 205–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Reis-Rodrigues, P. et al. Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11, 120–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cooper-Knock, J. et al. Gene expression profiling in human neurodegenerative disease. Nature Rev. Neurol. 8, 518–530 (2012).

    Article  CAS  Google Scholar 

  164. Blalock, E. M. et al. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl Acad. Sci. USA 101, 2173–2178 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Dobson, M. The story of medicine (Quercus, 2013).

    Google Scholar 

  166. Dobson, C. M. In the footsteps of alchemists. Science 304, 1259–1262 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Johnson, S. M. et al. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc. Chem. Res. 38, 911–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Razavi, H. et al. Benzoxazoles as transthyretin amyloid fibril inhibitors: synthesis, evaluation, and mechanism of action. Angew. Chem. Int. Ed. 42, 2758–2761 (2003). Provides initial evidence that stabilizing native states against aggregation offers effective therapeutic interventions.

    Article  CAS  Google Scholar 

  169. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Uversky, V. N. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin. Drug Discov. 7, 475–488 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Tóth, G. et al. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease. PLoS ONE 9, e87133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Arosio, P., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci. 35, 127–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Fersht, A. R. Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding (W. H. Freeman, 1999).

    Google Scholar 

  175. De Strooper, B., Vassar, R. & Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Rev. Neurol. 6, 99–107 (2010).

    Article  CAS  Google Scholar 

  176. Dumoulin, M. & Dobson, C. M. Probing the origins, diagnosis and treatment of amyloid diseases using antibodies. Biochimie 86, 589–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Hard, T. & Lendel, C. Inhibition of amyloid formation. J. Mol. Biol. 421, 441–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Luheshi, L. M. et al. Sequestration of the Aβ peptide prevents toxicity and promotes degradation in vivo. PLoS Biol. 8, e1000334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schenk, D. Amyloid-β immunotherapy for Alzheimer's disease: The end of the beginning. Nature Rev. Neurosci. 3, 824–828 (2002).

    Article  CAS  Google Scholar 

  180. Schenk, D., Basi, G. S. & Pangalos, M. N. Treatment strategies targeting amyloid β-protein. Cold Spring Harb. Perspect. Med. 2, a006387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with tremendous gratitude the many graduate students, postdoctoral fellows, collaborators and other colleagues whose discoveries and ideas are reflected in this Review — many of their names are included in the citations to published work. They are also very grateful to the many organizations that have funded their research over many years, including the Wellcome Trust, the Leverhulme Trust, the Alzheimer's Research Trust, Parkinson's UK, the Frances and Augustus Newman Foundation, the European Commission, UK Research Councils and Elan Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuomas P. J. Knowles, Michele Vendruscolo or Christopher M. Dobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Intrinsic

In the case of a protein, a property that only depends on its amino acid sequence.

Protein solubility

The concentration of the soluble fraction of a protein in equilibrium with the insoluble fraction. This thermodynamic definition, in the presence of high kinetic barriers between the various soluble and insoluble states of a protein, may, however, need to be extended to include kinetic factors.

Protein homeostasis

The ensemble of cellular processes that regulates the behaviour of proteins in terms of their conformations, interactions, concentrations and localizations.

Generic

In the case of proteins, a property that is common to most of them, as opposed to 'specific' properties. Such generic properties are often associated with the backbone that is common to all polypeptide molecules, whereas specific properties arise from the variations in the chemistry that is mediated by the side chains.

Chirality

The characteristic of a molecular structure that does not have mirror symmetry.

Young's modulus

A measure of the elastic properties of a material, defined as the ratio between stress and strain along a given axis.

Nucleation

In the transition from a fluid phase to a condensed phase, a process that generates species within the fluid phase that are capable of growing into the condensed phase.

Templating

A phenomenon in which structured aggregates promote the conversion of soluble protein species into similar aggregates.

Seeding

A phenomenon in nucleated growth processes by which nuclei of the aggregated phase promote the formation of larger aggregates.

Primary nucleation

A nucleation process that takes place by the spontaneous assembly of monomeric species.

Secondary nucleation

A process by which the formation of new nuclei in the aggregated phase is catalysed by existing aggregates.

Spreading

In the context of neurodegeneration, the spatial propagation of amyloid assemblies from cell to cell by a series of diffusion or transport mechanisms that are coupled with seeding or templating processes.

Cooperativity

A property of a system that results from its collective behaviour, but it is not exhibited by its component parts.

Molecular chaperones

Proteins that assist the protein-folding process, the maintenance of the soluble state of proteins and more generally contribute to generating and preserving protein homeostasis.

Systemic amyloidoses

A group of diseases characterized by the widespread deposition of amyloid aggregates in organs and tissues.

Protein metastasis

The ensemble of molecular processes whereby the functional soluble states of proteins convert into self-propagating aberrant assemblies that initiate a cascade of cytotoxic events.

Supersaturated

A condition in which a soluble substance is concentrated to a level above its critical value but kinetic barriers delay its transition to an insoluble state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, T., Vendruscolo, M. & Dobson, C. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15, 384–396 (2014). https://doi.org/10.1038/nrm3810

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing