Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-translational modifications of intermediate filament proteins: mechanisms and functions

Key Points

  • Intermediate filament (IF) proteins comprise a large family of tissue-specific cytoskeletal proteins that include the nuclear IFs (lamins) and cytoplasmic IFs (keratins, vimentin, desmin, peripherin, glial fibrillary acidic protein, neurofilaments (NFs), nestin, filensin, phakinin, synemin and syncoilin). Mutations in genes encoding IF proteins cause or predispose to more than 80 human diseases.

  • IF proteins undergo several post-translational modifications (PTMs), including phosphorylation, glycosylation, sumoylation, acetylation, prenylation, ubiquitylation and transamidation, which regulate each other through crosstalk and binding of IFs to other proteins. Prenylation is found exclusively in lamins, whereas most of the remaining modifications involve both cytoplasmic and nuclear IFs.

  • IF phosphorylation is a multifunctional PTM that regulates axonal transport (NFs), cell growth and stress responses (keratins), nuclear viral egress and nucleocytoplasmic transport of ribonucleoproteins (lamins), neuromuscular development (nestin), epithelial-to-mesenchymal transition and cell migration (vimentin and keratins).

  • IF sumoylation has been identified in lamins, keratins and vimentin, but is likely to involve most, if not all, IFs. Low-level sumoylation promotes IF solubility, whereas hypersumoylation inhibits it. Hypersumoylation is found in stress and disease contexts.

  • Other functional roles for IF PTMs include sensing of the metabolic environment (acetylation), regulation of IF turnover (ubiquitylation), regulation of cell survival mechanisms and protein–protein interactions (glycosylation and phosphorylation), association with the nuclear membrane (farnesylation) and formation of the cornified envelope in the skin (transamidation).

  • IFs undergo considerable disease-associated PTM changes that may manifest as site-specific decreases or increases. An increase in a site-specific PTM is exemplified by IF hyperphosphorylation (a stress marker in many diseases), IF hyperubiquitylation (due to proteasome inhibition) and IF transamidation (found in hepatocyte Mallory–Denk body inclusions). IF PTMs are attractive candidates as biomarkers of human disease and potential therapeutic targets.

Abstract

Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on–off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytoplasmic IF assembly and reorganization in response to phosphorylation and other PTMs.
Figure 2: Multifunctional roles for IF protein phosphorylation.
Figure 3: IF protein sumoylation regulates filament organization and solubility properties.
Figure 4: Mechanisms of IF PTM functions and crosstalk.

Similar content being viewed by others

References

  1. Ishikawa, H., Bischoff, R. & Holtzer, H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J. Cell Biol. 38, 538–555 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fuchs, E. & Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Goldman, R. D., Cleland, M. M., Murthy, S. N., Mahammad, S. & Kuczmarski, E. R. Inroads into the structure and function of intermediate filament networks. J. Struct. Biol. 177, 14–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Herrmann, H., Strelkov, S. V., Burkhard, P. & Aebi, U. Intermediate filaments: primary determinants of cell architecture and plasticity. J. Clin. Invest. 119, 1772–1783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nature Rev. Mol. Cell Biol. 11, 75–81 (2010).

    Article  CAS  Google Scholar 

  6. Omary, M. B. “IF-pathies”: a broad spectrum of intermediate filament-associated diseases. J. Clin. Invest. 119, 1756–1762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toivola, D. M., Strnad, P., Habtezion, A. & Omary, M. B. Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20, 79–91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hyder, C. L., Pallari, H. M., Kochin, V. & Eriksson, J. E. Providing cellular signposts — post-translational modifications of intermediate filaments. FEBS Lett. 582, 2140–2148 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Izawa, I. & Inagaki, M. Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state-specific antibodies. Cancer Sci. 97, 167–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Sihag, R. K., Inagaki, M., Yamaguchi, T., Shea, T. B. & Pant, H. C. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp. Cell Res. 313, 2098–2109 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Omary, M. B., Ku, N. O., Tao, G. Z., Toivola, D. M. & Liao, J. “Heads and tails” of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kaminsky, R. et al. SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev. Cell 17, 724–735 (2009). Demonstrates that IF sumoylation is evolutionarily conserved and crucial for IF assembly and function in vivo in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snider, N. T., Weerasinghe, S. V., Iniguez-Lluhi, J. A., Herrmann, H. & Omary, M. B. Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286, 2273–2284 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. Q. & Sarge, K. D. Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J. Cell Biol. 182, 35–39 (2008). First demonstration that IFs are functionally regulated by sumoylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ku, N. O., Toivola, D. M., Strnad, P. & Omary, M. B. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nature Cell Biol. 12, 876–885 (2010). First in vivo study showing that IF glycosylation serves as a protective mechanism in simple-type epithelia.

    Article  CAS  PubMed  Google Scholar 

  16. Snider, N. T. et al. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol. 200, 241–247 (2013). First demonstration that IFs are functionally regulated by Lys acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, S., Wong, P. & Coulombe, P. A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006). Demonstrates that IF association with 14-3-3 is importantfor cell growth regulation.

    Article  CAS  PubMed  Google Scholar 

  18. Ku, N. O., Michie, S., Resurreccion, E. Z., Broome, R. L. & Omary, M. B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl Acad. Sci. USA 99, 4373–4378 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, R. C. et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956–959 (2012). First demonstration that vimentin phosphorylation is involved in autophagy inhibition to promote tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ku, N. O. & Omary, M. B. Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. J. Biol. Chem. 276, 26792–26798 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Eriksson, J. E. et al. Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119, 1763–1771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: from cell architecture to nanomechanics. Nature Rev. Mol. Cell Biol. 8, 562–573 (2007).

    Article  CAS  Google Scholar 

  23. Kim, S. & Coulombe, P. A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–1597 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Herrmann, H. & Aebi, U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Parry, D. A., Strelkov, S. V., Burkhard, P., Aebi, U. & Herrmann, H. Towards a molecular description of intermediate filament structure and assembly. Exp. Cell Res. 313, 2204–2216 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ho, C. Y. & Lammerding, J. Lamins at a glance. J. Cell Sci. 125, 2087–2093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nature Rev. Mol. Cell Biol. 14, 13–24 (2013).

    Article  CAS  Google Scholar 

  28. Lee, C. H., Kim, M. S., Chung, B. M., Leahy, D. J. & Coulombe, P. A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nature Struct. Mol. Biol. 19, 707–715 (2012).

    Article  CAS  Google Scholar 

  29. Windoffer, R., Beil, M., Magin, T. M. & Leube, R. E. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194, 669–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. & Goldman, R. D. Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolsch, A., Windoffer, R. & Leube, R. E. Actin-dependent dynamics of keratin filament precursors. Cel. Motil. Cytoskeleton 66, 976–985 (2009).

    Article  CAS  Google Scholar 

  32. Coulombe, P. A., Kerns, M. L. & Fuchs, E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coulombe, P. A. et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66, 1301–1311 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Chung, B. M., Rotty, J. D. & Coulombe, P. A. Networking galore: intermediate filaments and cell migration. Curr. Opin. Cell Biol. 25, 600–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seltmann, K., Fritsch, A. W., Kas, J. A. & Magin, T. M. Keratins significantly contribute to cell stiffness and impact invasive behaviour. Proc. Natl Acad. Sci. USA 110, 18507–18512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Worman, H. J., Fong, L. G., Muchir, A. & Young, S. G. Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119, 1825–1836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leube, R. E., Moch, M., Kolsch, A. & Windoffer, R. “Panta rhei”: perpetual cycling of the keratin cytoskeleton. Bioarchitecture 1, 39–44 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fois, G. et al. Effects of keratin phosphorylation on the mechanical properties of keratin filaments in living cells. FASEB J. 27, 1322–1329 (2013). An important study that examines the mechanical properties of phosphorylation-deficient keratins to show that phosphorylation promotes keratin tortuousness during stretch.

    Article  CAS  PubMed  Google Scholar 

  39. Woll, S., Windoffer, R. & Leube, R. E. p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J. Cell Biol. 177, 795–807 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sivaramakrishnan, S., Schneider, J. L., Sitikov, A., Goldman, R. D. & Ridge, K. M. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C ζ. Mol. Biol. Cell 20, 2755–2765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Moritz, A. et al. Akt–RSK–S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci. Signal. 3, ra64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng, L., Zhou, X., Liao, J. & Omary, M. B. Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. J. Cell Sci. 112, 2081–2090 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Q. et al. Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS ONE 5, e13538 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Valgeirsdottir, S. et al. PDGF induces reorganization of vimentin filaments. J. Cell Sci. 111, 1973–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Snider, N. T., Park, H. & Omary, M. B. A. Conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J. Biol. Chem. 288, 31329–31337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pant, H. C., Shecket, G., Gainer, H. & Lasek, R. J. Neurofilament protein is phosphorylated in the squid giant axon. J. Cell Biol. 78, R23–R27 (1978). First study to demonstrate that IFs are targets of phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. Neurofilaments at a glance. J. Cell Sci. 125, 3257–3263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shea, T. B., Jung, C. & Pant, H. C. Does neurofilament phosphorylation regulate axonal transport? Trends Neurosci. 26, 397–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Binukumar, B. K. et al. Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: significance in neurodegeneration. Histochem. Cell Biol. 140, 23–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Shea, T. B. & Chan, W. K. Regulation of neurofilament dynamics by phosphorylation. Eur. J. Neurosci. 27, 1893–1901 (2008).

    Article  PubMed  Google Scholar 

  53. Yabe, J. T. et al. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J. Neurosci. 21, 2195–2205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Veeranna et al. Neurofilament tail phosphorylation: identity of the RT-97 phosphoepitope and regulation in neurons by cross-talk among proline-directed kinases. J. Neurochem. 107, 35–49 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rao, M. V. et al. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J. Cell Biol. 158, 681–693 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holmgren, A., Bouhy, D. & Timmerman, V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J. Peripher Nerv. Syst. 17, 365–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kushkuley, J. et al. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J. Cell Sci. 122, 3579–3586 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, S., Sunil, N., Tejada, J. M. & Shea, T. B. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J. Cell Sci. 124, 1022–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Ku, N. O. & Omary, M. B. A disease- and phosphorylation-related nonmechanical function for keratin 8. J. Cell Biol. 174, 115–125 (2006). First example of the involvement of IF phosphorylation in the pathogenesis of a disease-associated IF mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ku, N. O. et al. Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J. Cell Biol. 143, 2023–2032 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Toivola, D. M., Zhou, Q., English, L. S. & Omary, M. B. Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol. Biol. Cell 13, 1857–1870 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ku, N. O., Azhar, S. & Omary, M. B. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277, 10775–10782 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B. & Eriksson, J. E. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277, 10767–10774 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602 (1990). First study to show that the direct phosphorylation of lamins by CDC2 leads to mitotic disassembly of the nuclear lamina.

    Article  CAS  PubMed  Google Scholar 

  65. Hamirally, S. et al. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 5, e1000275 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morrison, L. A. & DeLassus, G. S. Breach of the nuclear lamina during assembly of herpes simplex viruses. Nucleus 2, 271–276 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Marty, F. M. & Boeckh, M. Maribavir and human cytomegalovirus-what happened in the clinical trials and why might the drug have failed? Curr. Opin. Virol. 1, 555–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Milbradt, J., Webel, R., Auerochs, S., Sticht, H. & Marschall, M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J. Biol. Chem. 285, 13979–13989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012). References 68 and 69 highlight the importance of nuclear lamina disassembly during nuclear export of endogenous RNPs and viral components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, J. et al. Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nature Neurosci. 14, 324–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sahlgren, C. M. et al. Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23, 5090–5106 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Mohseni, P. et al. Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J. Neurosci. 31, 11547–11552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cohen, S., Zhai, B., Gygi, S. P. & Goldberg, A. L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell Biol. 198, 575–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Green, K. J., Bohringer, M., Gocken, T. & Jones, J. C. Intermediate filament associated proteins. Adv. Protein Chem. 70, 143–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Freeman, A. K. & Morrison, D. K. 14-3-3 proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681–687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao, J. & Omary, M. B. 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 133, 345–357 (1996). First demonstration of a functional association between phosphorylated IFs and the adaptor protein 14-3-3.

    Article  CAS  PubMed  Google Scholar 

  78. Ku, N. O., Fu, H. & Omary, M. B. Raf-1 activation disrupts its binding to keratins during cell stress. J Cell Biol. 166, 479–485 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Margolis, S.S. et al. Role for the PP2A/B56δ phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759–773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boudreau, A. et al. 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc. Natl Acad. Sci. USA 110, E3937–E3944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mendez, M. G., Kojima, S. & Goldman, R. D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24, 1838–1851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, Q. S. et al. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30, 457–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Nieminen, M. et al. Vimentin function in lymphocyte adhesion and transcellular migration. Nature Cell Biol. 8, 156–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Ivaska, J., Pallari, H. M., Nevo, J. & Eriksson, J. E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050–2062 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Schoumacher, M., Goldman, R. D., Louvard, D. & Vignjevic, D. M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seltmann, K. et al. Keratins mediate localization of hemidesmosomes and repress cell motility. J. Invest. Dermatol. 133, 181–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Rotty, J. D. & Coulombe, P. A. A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197, 381–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iyer, S. V. et al. Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines. PLoS ONE 8, e53532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fortier, A. M., Asselin, E. & Cadrin, M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J. Biol. Chem. 288, 11555–11571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ivaska, J. et al. PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 24, 3834–3845 (2005). First evidence that vimentin phosphorylation is involved in regulating the motile properties of cells by controlling integrin trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chang, I. A. et al. Vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via β1-integrin activation. FASEB J. 26, 2401–2413 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Busch, T. et al. Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148–2159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alam, H. et al. Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS ONE 6, e27767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beil, M. et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biol. 5, 803–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  96. Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Zhong, N., Radu, G., Ju, W. & Brown, W. T. Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C. Biochem. Biophys. Res. Commun. 338, 855–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kelley, J. B. et al. The defective nuclear lamina in Hutchinson–gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol. Cell. Biol. 31, 3378–3395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Boudreau, E. et al. Lamin A/C mutants disturb sumo1 localization and sumoylation in vitro and in vivo. PLoS ONE 7, e45918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Simon, D. N., Domaradzki, T., Hofmann, W. A. & Wilson, K. L. Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol. Biol. Cell 24, 342–350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carberry, K., Wiesenfahrt, T., Windoffer, R., Bossinger, O. & Leube, R. E. Intermediate filaments in Caenorhabditis elegans. Cell. Motil. Cytoskeleton 66, 852–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Omary, M. B., Ku, N. O., Strnad, P. & Hanada, S. Toward unraveling the complexity of simple epithelial keratins in human disease. J. Clin. Invest. 119, 1794–1805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Strnad, P. et al. Keratin variants predispose to acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology 139, 828–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Toivola, D. M., Krishnan, S., Binder, H. J., Singh, S. K. & Omary, M. B. Keratins modulate colonocyte electrolyte transport via protein mistargeting. J. Cell Biol. 164, 911–921 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Demarque, M. D. et al. Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterology 140, 286–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guan, K. L., Yu, W., Lin, Y., Xiong, Y. & Zhao, S. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nature Protoc. 5, 1583–1595 (2010).

    Article  CAS  Google Scholar 

  109. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Hornbeck, P. V., Chabra, I., Kornhauser, J. M., Skrzypek, E. & Zhang, B. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4, 1551–1561 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Arbustini, E. et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J. Am. Coll. Cardiol. 39, 981–990 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Prust, M. et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology 77, 1287–1294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang, Y. R. et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 11, 439–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Chou, C. F., Smith, A. J. & Omary, M. B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267, 3901–3906 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Slawson, C., Lakshmanan, T., Knapp, S. & Hart, G. W. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol. Biol. Cell 19, 4130–4140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dong, D. L., Xu, Z. S., Hart, G. W. & Cleveland, D. W. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem. 271, 20845–20852 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. King, I. A. & Hounsell, E. F. Cytokeratin 13 contains O-glycosidically linked N-acetylglucosamine residues. J. Biol. Chem. 264, 14022–14028 (1989). First demonstration that IF proteins are glycosylated.

    Article  CAS  PubMed  Google Scholar 

  120. Dong, D. L. et al. Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J. Biol. Chem. 268, 16679–16687 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Ludemann, N. et al. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 280, 31648–31658 (2005).

    Article  PubMed  CAS  Google Scholar 

  122. Deng, Y. et al. Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. FASEB J. 22, 138–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Cheung, W. D. & Hart, G. W. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J. Biol. Chem. 283, 13009–13020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Jung, H. J. et al. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl Acad. Sci. USA 110, E1923–E1932 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Adam, S. A., Butin-Israeli, V., Cleland, M. M., Shimi, T. & Goldman, R. D. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 4, 142–150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ku, N. O. & Omary, M. B. Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J. Cell Biol. 149, 547–552 (2000). First direct evidence that IF turnover is regulated by phosphorylation-dependent ubiquitylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rogel, M. R., Jaitovich, A. & Ridge, K. M. The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc. Am. Thorac. Soc. 7, 71–76 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jaitovich, A. et al. Ubiquitin–proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J. Biol. Chem. 283, 25348–25355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Loffek, S. et al. The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum. Mutat. 31, 466–476 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goldfarb, L. G. & Dalakas, M. C. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J. Clin. Invest. 119, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liem, R. K. & Messing, A. Dysfunctions of neuronal and glial intermediate filaments in disease. J. Clin. Invest. 119, 1814–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tang, G., Perng, M. D., Wilk, S., Quinlan, R. & Goldman, J. E. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in Alexander disease astrocytes, and the small heat shock protein αB-crystallin reverses the inhibition. J. Biol. Chem. 285, 10527–10537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hagemann, T. L., Boelens, W. C., Wawrousek, E. F. & Messing, A. Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease. Hum. Mol. Genet. 18, 1190–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oh, Y. S. et al. Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice. Aging Cell 9, 810–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Candi, E. et al. A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc. Natl Acad. Sci. USA 95, 2067–2072 (1998). First evidence that transglutamination is essential for the mechanical properties of IFs in skin epithelia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Strnad, P. et al. Transglutaminase 2 regulates Mallory body inclusion formation and injury-associated liver enlargement. Gastroenterology 132, 1515–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Ku, N. O., Strnad, P., Zhong, B. H., Tao, G. Z. & Omary, M. B. Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory–Denk bodies. Hepatology 46, 1639–1649 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Kwan, R. et al. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory–Denk body formation. FASEB J. 26, 2318–2326 (2012). First example of functional crosstalk between IF phosphorylation and transamidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Song, Y. et al. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78, 109–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Icenogle, L. M. et al. Molecular and biological characterization of streptococcal SpyA-mediated ADP-ribosylation of intermediate filament protein vimentin. J. Biol. Chem. 287, 21481–21491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yuan, J., Huiatt, T. W., Liao, C. X., Robson, R. M. & Graves, D. J. The effects of mono-ADP-ribosylation on desmin assembly–disassembly. Arch. Biochem. Biophys. 363, 314–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Winter, D. L., Paulin, D., Mericskay, M. & Li, Z. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem. Cell Biol. 141, 1–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, H. et al. A method for systematic mapping of protein;ysine methylation identifies functions for HP1β in DNA damage response. Mol. Cell 50, 723–735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Moore, K. E. et al. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol. Cell 50, 444–456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, M111 012658 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Bremang, M. et al. Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Mol. Biosyst 50, 2231–2247 (2013).

    Article  CAS  Google Scholar 

  149. Yang, X. J. & Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hunter, T. & Sun, H. Crosstalk between the SUMO and ubiquitin pathways. Ernst Schering Found. Symp. Proc. 1, 1–16 (2008).

    Google Scholar 

  151. Daub, H. et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31, 438–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Veeranna et al. Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol. Aging 32, 2016–2029 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Ku, N. O. et al. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J. Clin. Invest. 98, 1034–1046 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kongara, S. et al. Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol. Cancer Res. 8, 873–884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liao, J., Ku, N. O. & Omary, M. B. Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J. Biol. Chem. 272, 17565–17573 (1997).

    Article  CAS  PubMed  Google Scholar 

  157. Mitsuhashi, H. et al. Specific phosphorylation of Ser458 of A-type lamins in LMNA-associated myopathy patients. J. Cell Sci. 123, 3893–3900 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Rudrabhatla, P., Grant, P., Jaffe, H., Strong, M. J. & Pant, H. C. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. FASEB J. 24, 4396–4407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Toivola, D. M. et al. Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology 40, 459–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Dale, J. M. & Garcia, M. L. Neurofilament phosphorylation during development and disease: which came first, the phosphorylation or the accumulation? J. Amino Acids 2012, 382107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Strnad, P., Paschke, S., Jang, K. H. & Ku, N. O. Keratins: markers and modulators of liver disease. Curr. Opin. Gastroenterol. 28, 209–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Rudrabhatla, P., Albers, W. & Pant, H. C. Peptidyl-prolyl isomerase 1 regulates protein phosphatase 2A-mediated topographic phosphorylation of neurofilament proteins. J. Neurosci. 29, 14869–14880 (2009). First demonstration that the highly regulated topographic phosphorylation of NFs is under the control of PIN1. This study also implicates PIN1 as a therapeutic target to reduce aberrant phosphorylation of NFs during neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Altelaar, A. F., Munoz, J. & Heck, A. J. Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Rev. Genet. 14, 35–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Gordon, L. B., Cao, K. & Collins, F. S. Progeria: translational insights from cell biology. J. Cell Biol. 199, 9–13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gordon, L. B. et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 109, 16666–16671 (2012). First clinical trial designed to pharmacologically target an aberrant IF modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Muchir, A. et al. Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc. Res. 93, 311–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Muchir, A. et al. Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery–Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet. Muscle 3, 17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Young, S. G., Yang, S. H., Davies, B. S., Jung, H. J. & Fong, L. G. Targeting protein prenylation in progeria. Sci. Transl. Med. 5, 171ps3 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Schreiber, K. H. & Kennedy, B. K. When lamins go bad: nuclear structure and disease. Cell 152, 1365–1375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Varela, I. et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nature Med. 14, 767–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Harper, M., Tillit, J., Kress, M. & Ernoult-Lange, M. Phosphorylation-dependent binding of human transcription factor MOK2 to lamin A/C. FEBS J. 276, 3137–3147 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol. Biol. Cell 17, 1154–1163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Toivola, D. M., Tao G. Z., Habtezion A., Liao J. & Omary M.B. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15, 608–617 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by US National Institutes of Health grants DK47918 and DK52951 (M.B.O.), DK093776 (N.T.S.) and a Department of Veterans Affairs Merit Review Award (M.B.O.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natasha T. Snider or M. Bishr Omary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Malonylation

Covalent addition of a malonyl group (CO-CH2-CO) to protein Lys residues.

Hutchinson–Gilford progeria syndrome

(HGPS). A genetic condition linked to lamin A (LMNA) mutations and characterized by premature ageing that begins in early childhood.

Dilated cardiomyopathy

(DCM). Lamin A(LMNA)-linked autosomal dominant disease that is characterized by cardiac dilatation and impaired systolic function. It is the major cause of heart transplants in young patients.

Familial partial lipodystrophy

A metabolic disorder that involves abnormal distribution of subcutaneous adipose tissue and can also lead to insulin-resistant diabetes.

Hemidesmosome

A cell-to-substrate attachment site that contains keratin IFs, plectin and α6β4 integrin, among other proteins that bind to extracellular matrix components, such as laminin 5 and type VII collagen.

Alexander disease

(AxD). A rare early-onset neurodegenerative disease that involves destruction of myelin and is caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP).

Amyotrophic lateral sclerosis

A progressive neurodegenerative disease, affecting motor neurons, which is mostly sporadic and caused by mutations in less than 10% of cases.

Steatohepatitis

Inflammation and fat accumulation in the liver that is most frequently triggered by alcohol consumption or obesity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, N., Omary, M. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15, 163–177 (2014). https://doi.org/10.1038/nrm3753

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing