Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restarting life: fertilization and the transition from meiosis to mitosis

Key Points

  • Upon fertilization, two highly specialized meiotic germ cells, the sperm and egg, need to be transformed into a totipotent mitotic embryo.

  • Sperm bind to the zona pellucida of the egg by an unknown mechanism that depends on the cleavage status and oligosaccharide modifications of zona pellucida proteins.

  • Sperm–egg fusion causes a rise in intracellular Ca2+ levels, which triggers exit from meiotic arrest and the initiation of the transition from meiosis to mitosis.

  • Maternal and paternal chromosomes are extensively modified following fertilization to ensure the genome is reprogrammed for totipotency and accurately distributed between daughter cells in the embryo.

  • The transition from meiotic to mitotic spindle assembly occurs gradually during mouse development and involves de novo production of centrioles in the blastocyst.

  • Actin-dependent spindle positioning and microtubule-dependent positioning of pronuclei have important roles in regulating the symmetry of cell division before and after fertilization.

  • The transition from maternal to embryonic control of gene expression involves the regulated degradation of maternal transcripts and timely activation of transcription from the embryonic genome.

Abstract

Fertilization triggers a complex cellular programme that transforms two highly specialized meiotic germ cells, the oocyte and the sperm, into a totipotent mitotic embryo. Linkages between sister chromatids are remodelled to support the switch from reductional meiotic to equational mitotic divisions; the centrosome, which is absent from the egg, is reintroduced; cell division shifts from being extremely asymmetric to symmetric; genomic imprinting is selectively erased and re-established; and protein expression shifts from translational control to transcriptional control. Recent work has started to reveal how this remarkable transition from meiosis to mitosis is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From oocyte to embryo.
Figure 2: Fertilization: sperm–egg binding and exit from meiosis.
Figure 3: Transition from meiotic to mitotic chromosomes.
Figure 4: Transition from acentrosomal to centrosomal spindle assembly.
Figure 5: Transition from asymmetric to symmetric spindle positioning.
Figure 6: Regulation of gene expression during egg to embryo transition.

Similar content being viewed by others

References

  1. Johnson, J., Canning, J., Kaneko, T., Pru, J. K. & Tilly, J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004).

    CAS  PubMed  Google Scholar 

  2. White, Y. A. R. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Med. 18, 413–421 (2012).

    CAS  PubMed  Google Scholar 

  3. Li, R. & Albertini, D. F. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nature Rev. Mol. Cell Biol. 14, 141–152 (2013).

    CAS  Google Scholar 

  4. Wassarman, P. M. & Litscher, E. S. Mammalian fertilization: the egg's multifunctional zona pellucida. Int. J. Dev. Biol. 52, 665–676 (2008).

    CAS  PubMed  Google Scholar 

  5. Bleil, J. D. & Wassarman, P. M. Mammalian sperm–egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20, 873–882 (1980).

    CAS  PubMed  Google Scholar 

  6. Vazquez, M. H., Phillips, D. M. & Wassarman, P. M. Interaction of mouse sperm with purified sperm receptors covalently linked to silica beads. J. Cell Sci. 92, 713–722 (1989).

    PubMed  Google Scholar 

  7. Rankin, T. L. et al. Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding. Development 125, 2415–2424 (1998).

    CAS  PubMed  Google Scholar 

  8. Dean, J. Reassessing the molecular biology of sperm–egg recognition with mouse genetics. BioEssays 26, 29–38 (2004).

    CAS  PubMed  Google Scholar 

  9. Bleil, J. D., Beall, C. F. & Wassarman, P. M. Mammalian sperm–egg interaction: fertilization of mouse eggs triggers modification of the major zona pellucida glycoprotein, ZP2. Dev. Biol. 86, 189–197 (1981).

    CAS  PubMed  Google Scholar 

  10. Burkart, A. D., Xiong, B., Baibakov, B., Jimenez-Movilla, M. & Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197, 37–44 (2012). Identifies ovastacin as the protease responsible for ZP2 cleavage and shows that it is a component of cortical granules.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gahlay, G., Gauthier, L., Baibakov, B., Epifano, O. & Dean, J. Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science 329, 216–219 (2010). Using mouse genetics, this study demonstrates that sperm–egg binding depends on the cleavage status of the zona pellucida protein ZP2.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baibakov, B., Boggs, N. A., Yauger, B., Baibakov, G. & Dean, J. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. J. Cell Biol. 197, 897–905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010). Shows that there is a rapid switch from meiotic to mitotic cohesin complexes upon fertilization in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang, P.-C. et al. Human sperm binding is mediated by the sialyl-lewisx oligosaccharide on the zona pellucida. Science 333, 1761–1764 (2011).

    CAS  PubMed  Google Scholar 

  15. Clark, G. F. The role of carbohydrate recognition during human sperm–egg binding. Hum. Reprod. 28, 566–577 (2013).

    CAS  PubMed  Google Scholar 

  16. Wassarman, P. M., Jovine, L. & Litscher, E. S. A profile of fertilization in mammals. Nature Cell Biol. 3, E59–E64 (2001).

    CAS  PubMed  Google Scholar 

  17. Ridgway, E. B., Gilkey, J. C. & Jaffe, L. F. Free calcium increases explosively in activating medaka eggs. Proc. Natl Acad. Sci. USA 74, 623–627 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinhardt, R., Zucker, R. & Schatten, G. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58, 185–196 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ducibella, T. et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev. Biol. 250, 280–291 (2002).

    CAS  PubMed  Google Scholar 

  20. Horner, V. L. & Wolfner, M. F. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev. Dyn. 237, 527–544 (2008).

    CAS  PubMed  Google Scholar 

  21. Saunders, C. M. et al. PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544 (2002).

    CAS  PubMed  Google Scholar 

  22. Miyazaki, S. et al. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science 257, 251–255 (1992).

    CAS  PubMed  Google Scholar 

  23. Miyazaki, S., Shirakawa, H., Nakada, K. & Honda, Y. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62–78 (1993).

    CAS  PubMed  Google Scholar 

  24. Masui, Y. & Markert, C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145 (1971).

    CAS  PubMed  Google Scholar 

  25. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. & Mayer, T. U. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048–1052 (2005). Elucidates the molecular mechanism by which a rise in intracellular Ca2+ levels triggers exit from metaphase II arrest.

    CAS  PubMed  Google Scholar 

  26. Hansen, D. V., Tung, J. J. & Jackson, P. K. CaMKII and Polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc. Natl Acad. Sci. USA 103, 608–613 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, J. & Maller, J. L. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr. Biol. 15, 1458–1468 (2005).

    CAS  PubMed  Google Scholar 

  28. Shoji, S. et al. Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J. 25, 834–845 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Madgwick, S., Hansen, D. V., Levasseur, M., Jackson, P. K. & Jones, K. T. Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. J. Cell Biol. 174, 791–801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tischer, T., Hormanseder, E. & Mayer, T. U. The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 338, 520–524 (2012). Demonstrates that EMI2 regulates APC/C activity during early embryonic divisions of X. laevis.

    CAS  PubMed  Google Scholar 

  31. Schmidt, A., Rauh, N. R., Nigg, E. A. & Mayer, T. U. Cytostatic factor: an activity that puts the cell cycle on hold. J. Cell Sci. 119, 1213–1218 (2006).

    CAS  PubMed  Google Scholar 

  32. Sassone-Corsi, P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178 (2002).

    CAS  PubMed  Google Scholar 

  33. van der Heijden, G. W. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122, 1008–1022 (2005).

    CAS  PubMed  Google Scholar 

  34. Torres-Padilla, M. E., Bannister, A. J., Hurd, P. J., Kouzarides, T. & Zernicka-Goetz, M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50, 455–461 (2006).

    CAS  PubMed  Google Scholar 

  35. Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nature Genet. 40, 411–420 (2008).

    CAS  PubMed  Google Scholar 

  36. Kobayashi, H. et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8, e1002440 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    CAS  PubMed  Google Scholar 

  38. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000). References 37 and 38 show for the first time that the paternal genome is actively demethylated independently of DNA replication following fertilization.

    CAS  PubMed  Google Scholar 

  39. Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabo, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wossidlo, M. et al. 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Google Scholar 

  41. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    CAS  PubMed  Google Scholar 

  42. Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biol. 9, 64–71 (2007).

    CAS  PubMed  Google Scholar 

  43. Santos, F., Peters, A. H., Otte, A. P., Reik, W. & Dean, W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236 (2005).

    CAS  PubMed  Google Scholar 

  44. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012). Reveals the mechanism by which PGC7 protects maternal chromatin from active demethylation in the zygote.

    CAS  PubMed  Google Scholar 

  45. Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    CAS  PubMed  Google Scholar 

  48. Li, X. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Messerschmidt, D. M. et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502 (2012).

    CAS  PubMed  Google Scholar 

  51. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    CAS  PubMed  Google Scholar 

  52. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).

    CAS  PubMed  Google Scholar 

  53. Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 117, 1221–1234 (2004).

    CAS  PubMed  Google Scholar 

  54. Xu, H. et al. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 5, 378–384 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, J. et al. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25, 755–766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    CAS  PubMed  Google Scholar 

  57. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    CAS  PubMed  Google Scholar 

  58. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Inoue, A. & Zhang, Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    CAS  PubMed  Google Scholar 

  61. Manandhar, G., Schatten, H. & Sutovsky, P. Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2–13 (2005).

    CAS  PubMed  Google Scholar 

  62. Calarco, P. G., Donahue, R. P. & Szollosi, D. Germinal vesicle breakdown in the mouse oocyte. J. Cell Sci. 10, 369–385 (1972).

    CAS  PubMed  Google Scholar 

  63. Mikeladze-Dvali, T. et al. Analysis of centriole elimination during C. elegans oogenesis. Development 139, 1670–1679 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007).

    CAS  PubMed  Google Scholar 

  65. Dumont, J. et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J. Cell Biol. 176, 295–305 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Breuer, M. et al. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J. Cell Biol. 191, 1251–1260 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Woolley, D. M. & Fawcett, D. W. The degeneration and disappearance of the centrioles during the development of the rat spermatozoon. Anat. Rec. 177, 289–301 (1973).

    CAS  PubMed  Google Scholar 

  68. Manandhar, G., Sutovsky, P., Joshi, H. C., Stearns, T. & Schatten, G. Centrosome reduction during mouse spermiogenesis. Dev. Biol. 203, 424–434 (1998).

    CAS  PubMed  Google Scholar 

  69. Calarco-Gillam, P. D., Siebert, M. C., Hubble, R., Mitchison, T. & Kirschner, M. Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35, 621–629 (1983).

    CAS  PubMed  Google Scholar 

  70. Maro, B., Howlett, S. K. & Webb, M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101, 1665–1672 (1985).

    CAS  PubMed  Google Scholar 

  71. Hiraoka, L., Golden, W. & Magnuson, T. Spindle-pole organization during early mouse development. Dev. Biol. 133, 24–36 (1989).

    CAS  PubMed  Google Scholar 

  72. Gueth-Hallonet, C. et al. γ-tubulin is present in acentriolar MTOCs during early mouse development. J. Cell Sci. 105, 157–166 (1993).

    CAS  PubMed  Google Scholar 

  73. Courtois, A., Schuh, M., Ellenberg, J. & Hiiragi, T. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198, 357–370 (2012). Shows that the transition from meiotic to mitotic spindle assembly occurs gradually in early mouse embryos, in which the centrosome is not introduced by the sperm.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Howe, K. & FitzHarris, G. A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse. Cell Cycle 12, 1616–1624 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fitzharris, G. A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136, 2111–2119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Manandhar, G., Simerly, C. & Schatten, G. Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum. Reprod. 15, 256–263 (2000).

    CAS  PubMed  Google Scholar 

  78. Sathananthan, A. H. et al. Centrioles in the beginning of human development. Proc. Natl Acad. Sci. USA 88, 4806–4810 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Paffoni, A. et al. In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertil. Steril. 87, 77–82 (2007).

    PubMed  Google Scholar 

  80. de Fried, E. P. et al. Human parthenogenetic blastocysts derived from noninseminated cryopreserved human oocytes. Fertil. Steril. 89, 943–947 (2008).

    PubMed  Google Scholar 

  81. Longo, F. J. & Chen, D. Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107, 382–394 (1985).

    CAS  PubMed  Google Scholar 

  82. Chaigne, A., Verlhac, M. H. & Terret, M. E. Spindle positioning in mammalian oocytes. Exp. Cell Res. 318, 1442–1447 (2012).

    CAS  PubMed  Google Scholar 

  83. Azoury, J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008).

    CAS  PubMed  Google Scholar 

  84. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).

    CAS  PubMed  Google Scholar 

  85. Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008). References 83 and 85 demonstrate for the first time that asymmetric spindle positioning relies on a formin 2 (FMN2)-dependent cytoplasmic actin network in mouse oocytes.

    CAS  PubMed  Google Scholar 

  86. Azoury, J., Lee, K. W., Georget, V., Hikal, P. & Verlhac, M. H. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development 138, 2903–2908 (2011).

    CAS  PubMed  Google Scholar 

  87. Pfender, S., Kuznetsov, V., Pleiser, S., Kerkhoff, E. & Schuh, M. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr. Biol. 21, 955–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schuh, M. An actin-dependent mechanism for long-range vesicle transport. Nature Cell Biol. 13, 1431–1436 (2011).

    CAS  PubMed  Google Scholar 

  89. Holubcová, Z., Howard, G. & Schuh, M. Vesicles modulate an actin network for asymmetric spindle positioning. Nat Cell Biol 15, 937–947 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P. & Maro, B. Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10, 1303–1306 (2000).

    CAS  PubMed  Google Scholar 

  91. Choi, T. et al. The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc. Natl Acad. Sci. USA 93, 7032–7035 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Na, J. & Zernicka-Goetz, M. Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr. Biol. 16, 1249–1254 (2006).

    CAS  PubMed  Google Scholar 

  93. Sun, S. C. et al. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS ONE 6, e18392 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, S. C. et al. WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes. Cell Cycle 10, 1853–1860 (2011).

    CAS  PubMed  Google Scholar 

  95. Sun, S. C., Sun, Q. Y. & Kim, N. H. JMY is required for asymmetric division and cytokinesis in mouse oocytes. Mol. Hum. Reprod. 17, 296–304 (2011).

    PubMed  Google Scholar 

  96. Li, H., Guo, F., Rubinstein, B. & Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nature Cell Biol. 10, 1301–1308 (2008).

    CAS  PubMed  Google Scholar 

  97. Yi, K. et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nature Cell Biol. 13, 1252–1258 (2011).

    CAS  PubMed  Google Scholar 

  98. Halet, G. & Carroll, J. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev. Cell 12, 309–317 (2007).

    CAS  PubMed  Google Scholar 

  99. Deng, M., Suraneni, P., Schultz, R. M. & Li, R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12, 301–308 (2007).

    CAS  PubMed  Google Scholar 

  100. Dehapiot, B. & Halet, G. Ran promotes oocyte polarization by regulating ERM (Ezrin/Radixin/Moesin) activation. Cell Cycle 12, 1672–1678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yi, K. et al. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J. Cell Biol. 200, 567–576 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning. J. Cell Sci. 111, 2283–2295 (1998).

    CAS  PubMed  Google Scholar 

  103. Wuhr, M. et al. A model for cleavage plane determination in early amphibian and fish embryos. Curr. Biol. 20, 2040–2045 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Wuhr, M., Dumont, S., Groen, A. C., Needleman, D. J. & Mitchison, T. J. How does a millimeter-sized cell find its center? Cell Cycle 8, 1115–1121 (2009).

    CAS  PubMed  Google Scholar 

  105. Hamaguchi, M. S. & Hiramoto, Y. Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the Colcemid- UV method. Dev. Growth Differ. 28, 143–156 (1986). Suggests a microtubule length-dependent pulling mechanism to position the pronucleus in the centre of the zygote.

    Google Scholar 

  106. Kimura, A. & Onami, S. Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. Dev. Cell 8, 765–775 (2005).

    CAS  PubMed  Google Scholar 

  107. Kimura, K. & Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl Acad. Sci. USA 108, 137–142 (2011).

    CAS  PubMed  Google Scholar 

  108. Shinar, T., Mana, M., Piano, F. & Shelley, M. J. A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo. Proc. Natl Acad. Sci. USA 108, 10508–10513 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schatten, G. et al. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice. Exp. Cell Res. 166, 191–208 (1986).

    CAS  PubMed  Google Scholar 

  110. Kim, N. H., Simerly, C., Funahashi, H., Schatten, G. & Day, B. N. Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol. Reprod. 54, 1397–1404 (1996).

    CAS  PubMed  Google Scholar 

  111. Chew, T. G., Lorthongpanich, C., Ang, W. X., Knowles, B. B. & Solter, D. Symmetric cell division of the mouse zygote requires an actin network. Cytoskeleton (Hoboken) 69, 1040–1046 (2012).

    CAS  Google Scholar 

  112. Wennekamp, S., Mesecke, S., Nedelec, F. & Hiiragi, T. A self-organization framework for symmetry breaking in the mammalian embryo. Nature Rev. Mol. Cell Biol. 14, 452–459 (2013).

    Google Scholar 

  113. Bouniol-Baly, C. et al. Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol. Reprod. 60, 580–587 (1999).

    CAS  PubMed  Google Scholar 

  114. Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004). A comprehensive analysis of gene expression during mouse development showing that maternal transcript degradation and zygotic genome activation occur in waves.

    CAS  PubMed  Google Scholar 

  115. Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

    CAS  PubMed  Google Scholar 

  116. Wang, S. et al. Proteome of mouse oocytes at different developmental stages. Proc. Natl Acad. Sci. 107, 17639–17644 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Potireddy, S., Vassena, R., Patel, B. G. & Latham, K. E. Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Dev. Biol. 298, 155–166 (2006).

    CAS  PubMed  Google Scholar 

  118. Oh, B., Hwang, S., McLaughlin, J., Solter, D. & Knowles, B. B. Timely translation during the mouse oocyte-to-embryo transition. Development 127, 3795–3803 (2000). First study to show that transcript stability and translation during oocyte maturation in mammals is regulated by CPEs in the 3′ UTR.

    CAS  PubMed  Google Scholar 

  119. Vasudevan, S., Seli, E. & Steitz, J. A. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes Dev. 20, 138–146 (2006).

    CAS  PubMed  Google Scholar 

  120. Flemr, M., Ma, J., Schultz, R. M. & Svoboda, P. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 82, 1008–1017 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Racki, W. J. & Richter, J. D. CPEB controls oocyte growth and follicle development in the mouse. Development 133, 4527–4537 (2006).

    CAS  PubMed  Google Scholar 

  122. Jahn, C. L., Baran, M. M. & Bachvarova, R. Stability of RNA synthesized by the mouse oocyte during its major growth phase. J. Exp. Zool. 197, 161–171 (1976).

    CAS  PubMed  Google Scholar 

  123. Paynton, B. V., Rempel, R. & Bachvarova, R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev. Biol. 129, 304–314 (1988).

    CAS  PubMed  Google Scholar 

  124. Piko, L. & Clegg, K. B. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev. Biol. 89, 362–378 (1982).

    CAS  PubMed  Google Scholar 

  125. Su, Y.-Q. et al. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 302, 104–117 (2007).

    CAS  PubMed  Google Scholar 

  126. Alizadeh, Z., Kageyama, S. & Aoki, F. Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol. Reprod. Dev. 72, 281–290 (2005).

    CAS  PubMed  Google Scholar 

  127. Medvedev, S., Pan, H. & Schultz, R. M. Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the tanscriptome. Biol. Reprod. 85, 575–583 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Medvedev, S., Yang, J., Hecht, N. B. & Schultz, R. M. CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev. Biol. 321, 205–215 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Golbus, M. S., Calarco, P. G. & Epstein, C. J. The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J. Exp. Zool. 186, 207–216 (1973).

    CAS  PubMed  Google Scholar 

  130. Warner, C. M. & Versteegh, L. R. In vivo and in vitro effect of α-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248, 678–680 (1974).

    CAS  PubMed  Google Scholar 

  131. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    CAS  PubMed  Google Scholar 

  132. Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).

    CAS  PubMed  Google Scholar 

  133. Schultz, R. M. & Worrad, D. M. Role of chromatin structure in zygotic gene activation in the mammalian embryo. Seminars Cell Biol. 6, 201–208 (1995).

    CAS  Google Scholar 

  134. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Torres-Padilla, M. E. & Zernicka-Goetz, M. Role of TIF1α as a modulator of embryonic transcription in the mouse zygote. J. Cell Biol. 174, 329–338 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tachibana, M. et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228–1238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopata, A. History of the egg in embryology. J. Mammal. Ova Res. 26, 2–9 (2009).

    Google Scholar 

  138. Harvey, W. & Whitteridge, G. Disputations touching the generation of animals (Blackwell Scientific, 1981).

    Google Scholar 

  139. Leeuwenhoek, A. Observationes, D. Anthonii Lewenhoeck, de natis e` semini genitali animalcules. Phil. Trans. R. Soc. Lond. B 12, 1040–1046 (1677).

    Google Scholar 

  140. Karl Ernst von, B. & O'Malley, C. D. On the genesis of the ovum of mammals and of man. Isis 47, 117–153 (1956).

    Google Scholar 

  141. Cobb, M. Heredity before genetics: a history. Nature Rev. Genet. 7, 953–958 (2006).

    CAS  PubMed  Google Scholar 

  142. Hertwig, O. Beiträge zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen Eies. Morphol. Jahrb. 1, 347–434 (1876).

    Google Scholar 

  143. Magerkurth, C., Töpfer-Petersen, E., Schwartz, P. & Michelmann, H. W. Scanning electron microscopy analysis of the human zona pellucida: influence of maturity and fertilization on morphology and sperm binding pattern. Hum. Reprod. 14, 1057–1066 (1999).

    CAS  PubMed  Google Scholar 

  144. Sobotta, J. Die Befruchtung und Furchung des Eies der Maus. Archiv für Mikroskopische Anatomie 45, 15–93 (1895).

    Google Scholar 

Download references

Acknowledgements

Dean Clift and Melina Schuh have received financial support from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 241548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina Schuh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Zona pellucida

A specialized extracellular matrix that forms a thick coat surrounding the egg.

Polyspermy

An egg is fertilized by more than one sperm.

Tobacco etch virus protease technology

(TEV protease technology). Using this technique, the recognition sequence for the TEV protease is introduced into proteins so that they may be artificially cleaved in vivo by ectopic expression of TEV protease.

APC/C

(Anaphase promoting complex; also known as the cyclosome). An E3 ubiquitin ligase that triggers anaphase by ubiquitylating cyclin B and securin, which targets them for proteolysis by the proteasome.

Separase

A Cys protease that triggers chromosome segregation by cleaving chromosomal cohesin complexes.

Pronucleus

The haploid nucleus of either sperm or egg within the zygote.

Totipotency

The ability of a cell to divide and produce all the differentiated cells of an organism.

Reductional chromosome segregation

During meiosis I, pairs of homologous chromosomes are segregated so that each daughter cell contains half the number of chromosomes as the parent.

Equational chromosome segregation

During meiosis II and mitosis, sister chromatids are segregated so that each daughter cell contains the same number of chromosomes as the parent.

Polysome

A cluster of ribosomes bound to an mRNA molecule, which is indicative of active translation.

N-end rule pathway

An ubiquitin–proteasome proteolysis pathway that regulates the half-life of cellular proteins based on their amino-terminal amino acid residue.

Telocentric

Centromeres located at the ends of chromosomes close to telomeres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clift, D., Schuh, M. Restarting life: fertilization and the transition from meiosis to mitosis. Nat Rev Mol Cell Biol 14, 549–562 (2013). https://doi.org/10.1038/nrm3643

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing