Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Role of the extracellular matrix in regulating stem cell fate

Abstract

The field of stem cells and regenerative medicine offers considerable promise as a means of delivering new treatments for a wide range of diseases. In order to maximize the effectiveness of cell-based therapies — whether stimulating expansion of endogenous cells or transplanting cells into patients — it is essential to understand the environmental (niche) signals that regulate stem cell behaviour. One of those signals is from the extracellular matrix (ECM). New technologies have offered insights into how stem cells sense signals from the ECM and how they respond to these signals at the molecular level, which ultimately regulate their fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different cell types interact with the ECM in various ways.
Figure 2: Stem cell responses on hydrogels of different stiffness and porosity.
Figure 3: Pathways regulating keratinocyte differentiation in response to environmental cues.

Similar content being viewed by others

References

  1. Watt, F. M. & Driskell, R. R. The therapeutic potential of stem cells. Philos. Trans. R. Soc. B 365, 155–163 (2010).

    Article  Google Scholar 

  2. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  3. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  4. Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

    Article  CAS  Google Scholar 

  5. Hall, P. A. & Watt, F. M. Stem cells: the generation and maintenance of cellular diversity. Development 106, 619–633 (1989).

    CAS  PubMed  Google Scholar 

  6. Hay, E. D. Extracellular matrix. J. Cell Biol. 91, 205s–223s (1981).

    Article  CAS  Google Scholar 

  7. Baker, B. M. & Chen, C. S. Deconstructing the third dimension — how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 1–10 (2012).

    Article  Google Scholar 

  8. Watt, F. M. & Fujiwara, H. Cell–extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  Google Scholar 

  9. Piwko-Czuchra, A. et al. β1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion. PLoS ONE 4, e5488 (2009).

    Article  Google Scholar 

  10. Ferreira, M., Fujiwara, H., Morita, K. & Watt, F. M. An activating β1 integrin mutation increases conversion of benign to malignant skin tumors. Cancer Res. 69, 1334–1342 (2009).

    Article  CAS  Google Scholar 

  11. O'Neill, C., Jordan, P. & Ireland, G. Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts. Cell 44, 489–496 (1986).

    Article  CAS  Google Scholar 

  12. Watt, F. M., Jordan, P. W. & O'Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85, 5576–5580 (1988).

    Article  CAS  Google Scholar 

  13. Théry, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

    Article  Google Scholar 

  14. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol. 12, 711–718 (2010).

    Article  CAS  Google Scholar 

  15. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  16. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  CAS  Google Scholar 

  17. Watt, F. M. & Hogan, B. L. M. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  Google Scholar 

  18. Goulas, S., Conder, R. & Knoblich, J. A. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11, 529–540 (2012).

    Article  CAS  Google Scholar 

  19. Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148, 112–125 (2012).

    Article  CAS  Google Scholar 

  20. Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    Article  Google Scholar 

  21. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  Google Scholar 

  22. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  23. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  Google Scholar 

  24. Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    Article  CAS  Google Scholar 

  25. Hadjipanayi, E., Brown, R. A. & Mudera, V. Interface integration of layered collagen scaffolds with defined matrix stiffness: implications for sheet-based tissue engineering. J. Tissue Eng. Regen. Med. 3, 230–241 (2009).

    Article  CAS  Google Scholar 

  26. Jha, A. K., Xu, X., Duncan, R. L. & Jia, X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466–2478 (2011).

    Article  CAS  Google Scholar 

  27. Nam, J., Johnson, J., Lannutti, J. J. & Agarwal, S. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 7, 1516–1524 (2011).

    Article  CAS  Google Scholar 

  28. Evans, N. D. et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cell Mater. 18, 1–13 (2009).

    Article  CAS  Google Scholar 

  29. Wang, P. Y., Tsai, W. B. & Voelcker, N. H. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater. 8, 519–530 (2012).

    Article  CAS  Google Scholar 

  30. Buxboim, A., Rajagopal, K., Brown, A. E. & Discher, D. E. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter. 22, 194116 (2010).

    Article  Google Scholar 

  31. Franck, C., Maskarinec, S. A., Tirrell, D. A. & Ravichandran, G. Three-dimensional traction force microscopy: a new tool for quantifying cell–matrix interactions. PLoS ONE 6, e17833 (2011).

    Article  CAS  Google Scholar 

  32. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    Article  CAS  Google Scholar 

  33. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    Article  CAS  Google Scholar 

  34. Gaudet, C. et al. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85, 3329–3335 (2003).

    Article  CAS  Google Scholar 

  35. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and Notch signaling. Science 340, 991–994 (2013).

    Article  CAS  Google Scholar 

  36. Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Mater. 9, 768–778 (2010).

    Article  CAS  Google Scholar 

  37. Saha, K. et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc. Natl Acad. Sci. USA 108, 18714–18719 (2011).

    Article  CAS  Google Scholar 

  38. Oh, S. et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA 106, 2130–2135 (2009).

    Article  CAS  Google Scholar 

  39. Unadkat, H. V. et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl Acad. Sci. USA 108, 16565–16570 (2011).

    Article  CAS  Google Scholar 

  40. Brizzi, M. F., Tarone, G. & Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645–651 (2012).

    Article  CAS  Google Scholar 

  41. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  42. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    Article  CAS  Google Scholar 

  43. Alves da Silva, M. L. et al. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 5, 722–732 (2011).

    Article  CAS  Google Scholar 

  44. Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods 8, 949–955 (2011).

    Article  CAS  Google Scholar 

  45. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  Google Scholar 

  46. Lin, Y.-C. et al. Origins of elasticity in intermediate filament networks. Phys. Rev. Lett. 104, 058101 (2010).

    Article  Google Scholar 

  47. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  48. Prager-Khoutorsky, M. et al. Fibroblast polarization is a matrix-rigidity dependent process controlled by focal adhesion mechanosensing. Nature Cell Biol. 13, 1457–1465 (2011).

    Article  CAS  Google Scholar 

  49. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  Google Scholar 

  50. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Commun. 3, 792 (2012).

    Article  Google Scholar 

  51. Young, J. L. & Engler, A. J. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002–1009 (2011).

    Article  CAS  Google Scholar 

  52. Mammoto, A., Mammoto, T. & Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

    Article  CAS  Google Scholar 

  53. Baarlink, C., Wang, H. & Grosse, R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864–867 (2013).

    Article  CAS  Google Scholar 

  54. Connelly, J. T., Mishra, A., Gautrot, J. E. & Watt, F. M. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation. PLoS ONE 6, e27259 (2011).

    Article  CAS  Google Scholar 

  55. Wozniak, M. A. et al. Adhesion regulates MAP kinase/ternary complex factor exchange to control a proliferative transcriptional switch. Curr. Biol. 22, 2017–2026 (2012).

    Article  CAS  Google Scholar 

  56. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  57. Mulder, K. W. et al. Diverse epigenetic strategies interact to control epidermal differentiation. Nature Cell Biol. 14, 753–763 (2012).

    Article  CAS  Google Scholar 

  58. Tan, D. W. M. et al. Single cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development 140, 1433–1444 (2013).

    Article  CAS  Google Scholar 

  59. Badylak, S. F., Weiss, D. J., Caplan, A. & Macchiarini, P. Engineered whole organs and complex tissues. Lancet 379, 943–952 (2012).

    Article  Google Scholar 

  60. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  61. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  Google Scholar 

  62. Paszek, M. J. et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nature Methods 9, 825–827 (2012).

    Article  CAS  Google Scholar 

  63. Grashoff C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  64. Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods 7, 969–971 (2010).

    Article  CAS  Google Scholar 

  65. Legant, W. R. et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Nat. Acad. Sci. USA 110, 881–886 (2013).

    Article  CAS  Google Scholar 

  66. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Wellcome Trust (to F.M.W.), the Medical Research Council (to F.M.W.), Leverhulme Trust (to W.T.S.H.) and the European Research Council (W.T.S.H.). They also thank all past and present members of their laboratories who have participated in their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiona M. Watt or Wilhelm T. S. Huck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Asymmetric cell division

A cell division that results in two daughter cells adopting different fates.

Articular cartilage

Cartilage that covers the ends of joints.

Elastic modulus

Mathematical description of the tendency of an object or substance to be deformed non-permanently when a force is applied to it.

Formins

A family of formin homology proteins that are involved in actin polymerization.

Fluorescence resonance energy transfer sensor

(FRET sensor). Tool that uses FRET to visualize protein interactions by light microscopy.

Linear elasticity theory

Mathematical study of how solid objects deform and become internally stressed under prescribed loading conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, F., Huck, W. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14, 467–473 (2013). https://doi.org/10.1038/nrm3620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing