Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and function of substrate recruitment by F-box proteins

Key Points

  • F-box proteins are the substrate-targeting subunits of S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes. In mammals, approximately 70 F-box proteins, each able to target multiple substrates, enable SCF complexes to control the levels of many regulatory proteins with diverse functions.

  • F-box protein substrates are recognized through degradation motifs (degrons). The best-characterized F-box proteins recognize conserved consensus degron sequences that include phosphorylated amino acids (phosphodegrons).

  • Although phosphodegrons remain the most common mechanism of substrate recognition by F-box proteins, many additional degron recognition mechanisms, both dependent on or independent of post-translational modifications, can facilitate substrate targeting.

  • Because an individual F-box protein can regulate the degradation of multiple substrates, it can control multiple different pathways in response to various different stimuli. Therefore, F-box proteins can have context-dependent functions, including functions that may seem contradictory.

  • The activity of F-box proteins can also be controlled directly through several mechanisms, including localization, expression and degradation.

  • F-box proteins have key roles in cell regulatory mechanisms, and they are frequently dysregulated in diseases. Historically, the F-box protein family has been examined in the context of cancer, but these proteins have emerging roles in a wide range of other diseases.

Abstract

S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes use a family of F-box proteins as substrate adaptors to mediate the degradation of a large number of regulatory proteins involved in diverse processes. The dysregulation of SCF complexes and their substrates contributes to multiple pathologies. In the 14 years since the identification and annotation of the F-box protein family, the continued identification and characterization of novel substrates has greatly expanded our knowledge of the regulation of substrate targeting and the roles of F-box proteins in biological processes. Here, we focus on the evolution of our understanding of substrate recruitment by F-box proteins, the dysregulation of substrate recruitment in disease and potential avenues for F-box protein-directed disease therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cullin–RING ligase family.
Figure 2: Recognition of substrates by F-box proteins.
Figure 3: Dysregulation of F-box protein-mediated degradation in disease.
Figure 4: Generalized and context-dependent functions of F-box proteins.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  2. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012). An in-depth examination of the current state of our knowledge of ubiquitin as a signal for both proteasomal degradation and other processes.

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yen, H. C. et al. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  6. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004). Presents a unified nomenclature for the F-box proteins, details their domain structures and describes their evolutionary relationship. However, certain domains that were initially not detected in FBXO proteins have since been described, such as the haemerythrin domain in FBXL5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skaar, J. R. et al. SnapShot: F box proteins II. Cell 137,1358.e1 (2009).

    Article  CAS  Google Scholar 

  8. Cenciarelli, C. et al. Identification of a family of human F-box proteins. Curr. Biol. 9, 1177–1179 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Winston, J. T. et al. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. D'Angiolella, V. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D'Angiolella, V. et al. SCFCyclin F controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glenn, K. A. et al. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J. Biol. Chem. 283, 12717–12729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nature Rev. Mol. Cell Biol. 9, 679–690 (2008).

    Article  CAS  Google Scholar 

  15. Lau, A. W. et al. The Fbw7 and βTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front. Biosci. 17, 2197–2212 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  16. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  17. Welcker, M. et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol. Cell 12, 381–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, W. et al. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, X. et al. Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase. Proc. Natl Acad. Sci. USA 109, 3287–3292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koivomagi, M. et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480, 128–131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Carrano, A. C. et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999). References 23 and 24 describe the SKP2-mediated degradation of p27 and provide insight into the function and clinical relevance of SCF complexes. Subsequent studies have established that SKP2 overexpression and low p27 expression are poor prognostic indicators in patients with various tumours.

    Article  CAS  PubMed  Google Scholar 

  25. Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biol. 3, 321–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Spruck, C. et al. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol. Cell 7, 639–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, D. I. et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-αB crystallin complex. Mol. Cell 24, 355–366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. den Engelsman, J. et al. The small heat-shock protein αB-crystallin promotes FBX4-dependent ubiquitination. J. Biol. Chem. 278, 4699–4704 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Ouni, I. et al. A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Mol. Cell 40, 954–964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duan, S. et al. mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol. Cell 44, 317–324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, D. et al. mTOR drives its own activation via SCFβTrCP-dependent degradation of the mTOR inhibitor DEPTOR. Mol. Cell 44, 290–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Y. et al. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy. Mol. Cell 44, 304–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao, I. et al. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130, 943–957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bai, C. et al. Human cyclin F. EMBO J. 13, 6087–6098 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bashir, T. et al. Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Moshe, Y. et al. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Natl Acad. Sci. USA 101, 7937–7942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Yen, H. C. & Elledge, S. J. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Vashisht, A. A. et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326, 718–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salahudeen, A. A. et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326, 722–726 (2009). References 42 and 43 establish a new means to regulate F-box protein stability through iron binding. In addition, reference 43 suggests that iron binding might also affect substrate binding, although this remains to be confirmed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez, M. et al. Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 118, e168–e179 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Chollangi, S. et al. Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms. J. Biol. Chem. 287, 23710–23717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shu, C. et al. The structural basis of iron sensing by the human F-box protein FBXL5. Chembiochem. 13, 788–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Santra, M. K. et al. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459, 722–725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bassermann, F. et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 122, 45–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007). References 49 and 50 provide the first demonstration that endogenous small molecules (in this case hormones) can dictate substrate binding to F-box proteins. These studies have important implications not only for other hormone-based recognition systems, but also for the development of drugs targeting the F-box protein–substrate interface.

    Article  CAS  PubMed  Google Scholar 

  51. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida, Y. et al. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278, 43877–43884 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y. W. et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol. Cell 35, 442–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rossi, M. et al. Regulation of the CRL4 ubiquitin ligase and cell-cycle exit by the SCF ubiquitin ligase. Mol. Cell 49, 1159–1166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abbas, T. et al. CRL1–FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol. Cell 49, 1147–1158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuchay, S. et al. FBXL2- and PTPL1-mediated degrdation of p110-free p85β regulatory subunit controls the PI3K signalling cascade. Nature Cell Biol. 21 Apr 2013 (doi:10.1038/ncb2731).

  57. Zeng, Z. et al. Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18, 214–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, Y. & Hao, B. Structural basis of dimerization-dependent ubiquitination by the SCFFbx4 ubiquitin ligase. J. Biol. Chem. 285, 13896–13906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Godinho, S. I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Siepka, S. M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xing, W. et al. SCF ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013). Describes the crystal structure of FBXL3 bound to CRY2 and demonstrates both domain-dependent recognition and the potential for ligand-dependent regulation of recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. M. et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Kaelin, W. G. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 74, 115–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Nishimura, K. et al. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Yen, J. L. et al. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol. Cell 48, 288–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki, H. et al. Homodimer of two F-box proteins βTrCP1 or βTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275, 2877–2884 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Welcker, M. & Clurman, B. E. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2, 7 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hao, B. et al. Structure of a Fbw7–Skp1–cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Zimmerman, E. S. et al. Structural assembly of cullin–RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 20, 714–721 (2010). Provides an excellent overview of the structures of SCF complexes and other CRLs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sandberg, J. K. et al. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr. HIV Res. 10, 327–333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, L. et al. Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways. FEBS Lett. 583, 607–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Price, C. T. et al. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog. 5, e1000704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Med. 16, 1152–1156 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genet. 42, 105–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Di Fonzo, A. et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Akari, H. et al. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor κB-dependent expression of antiapoptotic factors. J. Exp. Med. 194, 1299–1311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bour, S. et al. The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J. Biol. Chem. 276, 15920–15928 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  82. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Crusio, K. M. et al. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene 29, 4865–4873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Inuzuka, H. et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Bahram, F. et al. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).

    CAS  PubMed  Google Scholar 

  90. Gregory, M. A. & Hann, S. R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Busino, L. et al. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biol. 14, 375–385 (2012). Shows that FBXW7, an established tumour suppressor in many tissues, is a pro-survival factor in tumours of the B cell lineage and highlights that context-dependent functions of F-box proteins could be exploited through the inhibition of degron kinases, such as GSK3.

    Article  CAS  PubMed  Google Scholar 

  93. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loffler, H. et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22, 8063–8071 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Lehman, N. L. et al. Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am. J. Pathol. 170, 1793–1805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. MacDonald, B. T. et al. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nature Genet. 44, 1316–1320 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Cunha-Ferreira, I. et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19, 43–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Guderian, G. et al. Plk4 trans-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation. J. Cell. Sci. 123, 2163–2169 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Puklowski, A. et al. The SCF–FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nature Cell Biol. 13, 1004–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Fu, J. et al. Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis. Cancer Sci. 104, 508–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaizuka, T. et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285, 20109–20116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takai, H. et al. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Fernandez-Saiz, V. et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biol. 15, 72–81.

  111. Manchado, E. et al. The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem. Soc. Trans. 38, 65–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Shirogane, T. et al. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863–26872 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Takahashi, J. S. et al. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Rev. Genet. 9, 764–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Vanselow, K. et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 20, 2660–2672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shanware, N. P. et al. Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability. J. Biol. Chem. 286, 12766–12774 (2012).

    Article  CAS  Google Scholar 

  116. Walton, K. M. et al. Selective inhibition of casein kinase 1ɛ minimally alters circadian clock period. J. Pharmacol. Exp. Ther. 330, 430–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Meng, Q. J. et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl Acad. Sci. USA 107, 15240–15245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Keers, R. et al. Reduced anxiety and depression-like behaviours in the circadian period mutant mouse afterhours. PLoS ONE 7, e38263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dardente, H. et al. Implication of the F-Box protein FBXL21 in circadian pacemaker function in mammals. PLoS ONE 3, e3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Yoo, S. H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091–1105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, X. et al. FBXL21 association with schizophrenia in Irish family and case-control samples. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 147B, 1231–1237 (2008).

  123. Baresova, P. et al. Kaposi sarcoma-associated herpesvirus vIRF-3 protein binds to F-box of Skp2 protein and acts as a regulator of c-Myc protein function and stability. J. Biol. Chem. 287, 16199–16208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reviriego-Mendoza, M. M. & Frisque, R. J. Interaction and co-localization of JC virus large T antigen and the F-box protein β-transducin-repeat containing protein. Virology 410, 119–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Isobe, T. et al. Adenovirus E1A inhibits SCFFbw7 ubiquitin ligase. J. Biol. Chem. 284, 27766–27779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu, S. et al. CAND1 controls in vivo dynamics of the cullin 1–RING ubiquitin ligase repertoire. Nature Commun. 4, 1642 (2013).

    Article  CAS  Google Scholar 

  127. Pierce, N. W. et al. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153, 206–215 (2013). An intricate examination of the biochemistry of CAND1 (cullin-associated and neddylation-dissociated 1) and SCF complexes. Demonstrates that CAND1 is an important assembly factor for CRLs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zemla, A. et al. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nature Commun. 4, 1641 (2013).

    Article  CAS  Google Scholar 

  129. Duda, D. M. et al. Structure of a glomulin–RBX1–CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol. Cell 47, 371–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tron, A. E. et al. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol. Cell 46, 67–78 (2012). Together, references 129 and 130 introduce a novel player to the regulation of CRLs. Although the phenotypic effects of glomulin are manifested through FBXW7 and its substrates, the biochemical mechanism of glomulin indicates the ability to broadly regulate CRL complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chaves, I. et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012). Although it was discovered before the crystal structure of the FBXL3–CRY complex, the small molecule described in reference 132 probably binds the FAD-binding pocket of CRY, illustrating the feasibility of targeting drugs to the F-box protein–substrate interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, L. et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19, 1515–1524 (2012). This study highlights the use of the F-box protein–substrate interface as a target for new therapies and presents lead compounds for the future development of SKP2 inhibitors for cancer treatment. These lead compounds were identified in silico , on the basis of the SKP2–CKS1–p27 peptide structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Orlicky, S. et al. An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Biotech. 28, 733–737 (2010).

    Article  CAS  Google Scholar 

  135. Aghajan, M. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotech. 28, 738–742 (2010).

    Article  CAS  Google Scholar 

  136. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sakamoto, K. M. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell Proteom. 2, 1350–1358 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to their colleagues in the field for omitting their work owing to space constraints. J.R.S. is a Special Fellow of The Leukemia and Lymphoma Society. J.K.P. is supported by a fellowship from the Lymphoma Research Foundation. Work in the Pagano laboratory is supported by grants from the US National Institutes of Health (NIH) (R37CA076584 and R01GM057587). M.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey R. Skaar or Michele Pagano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michele Pagano's homepage

Glossary

Ubiquitin

A 76-amino-acid protein that can be covalently conjugated to Lys residues in other proteins to specify several protein fates. Polyubiquitin chains can be generated using seven internal Lys residues in ubiquitin. Lys11- or Lys48-linked chains target proteins to the proteasome, whereas other chains, such as Lys63-linked chains, have signalling roles. Monoubiquitylation also has a signalling role.

RING

Really interesting new gene (RING) proteins coordinate zinc using Cys and His residues in a cross-brace arrangement. RING proteins typically recruit E2 ubiquitin-conjugating enzymes.

NEDD8

A small ubiquitin-like protein that can be covalently conjugated to other proteins. Cullin proteins are the primary targets for neddylation, which activates the cullin–RING ligase.

Degrons

Small sections of a substrate that are recognized by a ubiquitin ligase and that are required for substrate degradation. Canonical degrons for F-box proteins are very short, conserved stretches of amino acids.

β-transducin repeat-containing protein

(βTrCP). Refers to two paralogous F-box proteins, βTrCP1 (FBXW1 (F-box and WD40 domain 1)) and βTrCP2 (FBXW11), that are biochemically indistinguishable. βTrCP recognizes phosphodegrons through WD40 repeats.

Cyclin-dependent kinase

(CDK). These are drivers of the cell cycle. The activity of these kinases is controlled by the availability of their cognate cyclins. The oscillation of cyclin levels during the cell cycle determines which CDKs are active.

αβ-crystallin

A chaperone protein that can be induced by heat, but unlike heat shock proteins, it does not re-fold proteins. Instead, αβ-crystallin forms protein aggregates.

Cyclin-homology domain

This domain normally determines the binding of cyclins to cyclin-dependent kinase substrates. The original cyclins were identified on the basis of their cyclic oscillations, but additional proteins contain a cyclin-homology domain, which has led to their designation as cyclins.

Ribonucleotide reductase subunit M2

(RRM2). A subunit of the enzyme that converts ribonucleotides to deoxyribonucleotides for DNA replication. RRM2 is regulated by the cell cycle, whereas the RRM1 subunit is stable throughout the cell cycle.

Isoprenylation

The transfer of a farnesyl or geranyl–geranyl moiety to a carboxy-terminal Cys residue of a target protein. This modification facilitates protein recruitment to membranes.

RAB3-interacting molecule 1

(RIM1). It is expressed near the active zone of the neuronal synapse and interacts with many presynaptic proteins, including RAB3. It controls calcium-evoked neurotransmitter release.

Auxin

A family of plant hormones required for growth signalling. Indole-3-acetic acid is the most potent auxin. They bind to TRANSPORT INHIBITOR RESPONSE 1, a plant F-box protein, promoting its interaction with auxin–indoleacetic acid transcriptional repressors.

Jasmonate

A lipid-based plant hormone that binds to CORONATINE-INSENSITIVE 1, an F-box protein, and JA–ZIM domain (JAZ), a transcriptional regulator, promoting the degradation of JAZ.

Checkpoint kinase 1

(CHK1). A Ser/Thr kinase that is required for checkpoint arrest and DNA repair following DNA damage.

CDT2

A DDB1- and CUL4-associated factor (DCAF) protein that mediates the degradation of SET domain-containing protein 8, p21 and CDT1, preventing re-replication in S phase.

Cryptochrome 1 and cryptochrome 2

(CRY1 and CRY2). Mammalian CRY proteins function as transcriptional repressors within a negative feedback loop of the circadian cycle. CLOCK and BMAL1 activate the transcription of genes encoding period (PER) and CRY proteins, which then negatively regulate transcription by CLOCK–BMAL1. In lower organisms, CRY proteins function as photoreceptors, but this activity is not present in mammals.

p100

An inhibitor of nuclear factor-κB (NF-κB) signalling and the precursor for p52, which forms an active transcription factor in conjunction with REL family proteins. p100 is part of the non-canonical NF-κB signalling pathway, which largely responds to developmental signals.

Bortezomib

A proteasome inhibitor approved as frontline therapy for multiple myelomas. Originally, much of its effectiveness was ascribed to inhibition of canonical nuclear factor-κB signalling through stabilization of inhibitor of κB proteins.

DEPTOR

(DEP-domain containing mTOR-interacting protein). An inhibitor of the mammalian target of rapamycin (mTOR) kinase in the context of both mTOR complex 1 (mTORC1) and mTORC2.

Mammalian target of rapamycin

(mTOR). A PI3K that is an important regulator of cell growth and metabolism, particularly protein synthesis. mTOR forms two complexes, designated mTOR complex 1 (mTORC1) and mTORC2, which have multiple feedback links.

Telomere length regulation protein 2 and TELO2-interacting protein 1

(TEL2 and TTI1). Evolutionarily conserved proteins that interact with all six mammalian PI3K-like protein kinases and control their abundance.

Familial advanced sleep phase syndrome

An inherited circadian and sleep disorder in which patients have altered circadian rhythms, with early sleep onset and early waking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skaar, J., Pagan, J. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14, 369–381 (2013). https://doi.org/10.1038/nrm3582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3582

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer