Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origins and implications of pluripotent stem cell variability and heterogeneity

Key Points

  • There are marked differences in the in vitro differentiation capacity of pluripotent stem cell lines, including embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. These differences currently limit their possible application in the clinic and as a research tool.

  • The molecular underpinnings of these functional differences are unclear. In some cases, the differences can be ameliorated by altering culture conditions by adding or removing specific growth factors and/or signalling molecules.

  • Pluripotent stem cells derived using the same method have highly similar gene expression profiles, yet can exhibit functional differences. This suggests that genetic or epigenetic changes are silent in the pluripotent state.

  • Most genetic differences between founder and reprogrammed cells seem to pre-exist in a minor population of the founder cells.

  • Epigenetic differences between ES cells and iPS cells are both residual (that is, they maintain the same epigenetic state as their respective founder cell type) and aberrant (that is, resembling neither ES cells nor founder cells), and both types of differences may have an impact on the in vitro differentiation process.

  • It remains unclear whether gene expression heterogeneity within a clonal pluripotent stem cell line is a crucial feature of pluripotency, and whether this gene expression heterogeneity is associated with functional differences between different pluripotent cell lines.

Abstract

Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could 'lock' the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the mouse pluripotency network.

Similar content being viewed by others

References

  1. Kahan, B. W. & Ephrussi, B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl Cancer Inst. 44, 1015–1036 (1970).

    CAS  PubMed  Google Scholar 

  2. Evans, M. J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. Development 28, 163–176 (1972).

    CAS  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). A landmark paper that demonstrates transcription factor-based reprogramming to pluripotent-like cells. It initiated a race to reprogram human fibroblasts to pluripotency, leading to widespread accessibility to pluripotent stem cells.

    Article  CAS  PubMed  Google Scholar 

  4. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nichols, J. & Smith, A. Pluripotency in the embryo and in culture. Cold Spring Harb. Persp.Biol. 4, a008128 (2012).

    Google Scholar 

  6. Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Rev. Genet. 7, 319–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol. 13, 497–505 (2011).

    CAS  PubMed  Google Scholar 

  8. Cohen, D. E. & Melton, D. Turning straw into gold: directing cell fate for regenerative medicine. Nature Rev. Genet. 12, 243–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, H., Lensch, M. W., Cahan, P. & Daley, G. Q. Investigating monogenic and complex diseases with pluripotent stem cells. Nature Rev. Genet. 12, 266–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bellin, M., Marchetto, M. C., Gage, F. H. & Mummery, C. L. Induced pluripotent stem cells: the new patient? Nature Rev. Mol. Cell Biol. 13, 713–726 (2012).

    Article  CAS  Google Scholar 

  11. Cherry, A. B. C. & Daley, G. Q. Reprogramming cellular identity for regenerative medicine. Cell 148, 1110–1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Niwa, H. Mouse ES cell culture system as a model of development. Dev. Growth Differ. 52, 275–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Grskovic, M., Javaherian, A., Strulovici, B. & Daley, G. Q. Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Rev. Drug Discov. 10, 915–929 (2011).

    CAS  Google Scholar 

  16. Banito, A. & Gil, J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep. 11, 353–359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loh, Y.-H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Thomson, M. et al. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875–889 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teo, A. K. K. et al. Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 25, 238–250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kunath, T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Lowell, S., Benchoua, A., Heavey, B. & Smith, A. G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol. 4, e121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L. & Murphy, K. M. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133, 3787–3796 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. & Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun. 343, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Berge, ten, D. et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biol. 13, 1070–1075 (2011).

    Article  CAS  Google Scholar 

  33. Yi, F. et al. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biol. 13, 762–770 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biol. 13, 838–845 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Struct. Mol. Biol. 15, 259–267 (2008).

    Article  CAS  Google Scholar 

  37. Delaloy, C. et al. microRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6, 323–335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol. 8, 285–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, D., Fang, J., Li, Y. & Zhang, J. Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PLoS ONE 4, e7684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berstine, E. G., Hooper, M. L., Grandchamp, S. & Ephrussi, B. Alkaline phosphatase activity in mouse teratoma. Proc. Natl Acad. Sci. 70, 3899–3903 (1973).

    Article  CAS  PubMed  Google Scholar 

  43. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Brons, I. G. M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. De Los Angeles, A., Loh, Y.-H., Tesar, P. J. & Daley, G. Q. Accessing naïve human pluripotency. Curr. Opin. Genet. Dev. 22, 272–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnol. 26, 313–315 (2008). The first paper to systematically compare the in vitro differentiation capacity of human ES cells. It demonstrates that despite the equivalence of human ES cells by teratoma formation, human ES cells can still exhibit great tendencies to differentiate into specific lineages in vitro.

    Article  CAS  Google Scholar 

  49. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S. & Eggan, K. C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Hu, B.-Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boulting, G. L. et al. A functionally characterized test set of human induced pluripotent stem cells. Nature Biotechnol. 29, 279–286 (2011).

    Article  CAS  Google Scholar 

  52. Grigoriadis, A. E. et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115, 2769–2776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang, K.-H. et al. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp. Cell Res. 314, 2930–2940 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kelly, D. L. & Rizzino, A. DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. Mol. Reprod. Dev. 56, 113–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Loring, J. F., Porter, J. G., Seilhammer, J., Kaser, M. R. & Wesselschmidt, R. A gene expression profile of embryonic stem cells and embryonic stem cell-derived neurons. Restor. Neurol. Neurosci. 18, 81–88 (2001).

    CAS  PubMed  Google Scholar 

  56. Ramalho-Santos, M. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Fortunel, N. O. et al. Comment on “'Stemness': transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302, 393 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. D'Amour, K. A. & Gage, F. H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl Acad. Sci. 100, 11866–11872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka, T. S. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 12, 1921–1928 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato, N. et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol. 260, 404–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Sperger, J. M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. 100, 13350–13355 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeng, X. et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Bhattacharya, B. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Abeyta, M. J. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Chin, M. H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marchetto, M. C. N. et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE 4, e7076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghosh, Z. et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS ONE 5, e8975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010). A careful comparison of the expression profiles of human ES cells and human iPS cells, arguing that no set of genes consistently distinguishes these two cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Newman, A. M. & Cooper, J. B. Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7, 258–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biol. 13, 541–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Bock, C. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Phanstiel, D. H. et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods 8, 821–827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruiz, S. et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 16196–16201 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim, H. et al. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8, 695–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Narsinh, K. H. et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Invest. 121, 1217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kalmar, T. et al. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. MacArthur, B. D. et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nature Cell Biol. 14, 1139–1147 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 470, 63–67 (2011).

    Article  CAS  Google Scholar 

  89. Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. Nature Rev. Mol. Cell Biol. 12, 36–47 (2011).

    Article  CAS  Google Scholar 

  90. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010). One of the first and most comprehensive studies to investigate the extent to which DNA methylation patterns of diverse founder cell types are detectable in reprogrammed mouse iPS cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  Google Scholar 

  92. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnol. 28, 848–855 (2010).

    Article  CAS  Google Scholar 

  93. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet β-cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carey, B. W. et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9, 588–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Kajiwara, M. et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 12538–12543 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hussein, S. M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Martins-Taylor, K. et al. Recurrent copy number variations in human induced pluripotent stem cells. Nature Biotechnol. 29, 488–491 (2011).

    Article  CAS  Google Scholar 

  101. Cheng, L. et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10, 337–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ji, J. et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30, 435–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Young, M. A. et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10, 570–582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012). A sequence-based mapping of DNA copy number differences between founder cells and reprogrammed human iPS cells. Rather than being induced by reprogramming, most CNVs are already present as rare alleles in the founder population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruiz, S. et al. Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming. Nature Commun. 4, 1382 (2013).

    Article  CAS  Google Scholar 

  106. International Stem Cell Initiative. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnol. 29, 1132–1144 (2011).

  107. Stevens, L. C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 21, 364–382 (1970).

    Article  CAS  PubMed  Google Scholar 

  108. Rosenthal, M. D., Wishnow, R. M. & Sato, G. H. In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. J. Natl Cancer Inst. 44, 1001–1014 (1970).

    CAS  PubMed  Google Scholar 

  109. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Park, I.-H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sneddon, J. B., Borowiak, M. & Melton, D. A. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491, 765–768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Suda, Y., Suzuki, M., Ikawa, Y. & Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133, 197–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.Q.D. is supported by grants from the US National Institutes of Health (NIH) (UO1-HL100001 Progenitor cell biology consortium, R24-DK092760, P50HG005550 and special funds from the ARRA stimulus package- RC2-HL102815, RC4DK 090913), the Roche Foundation for Anemia Research, Alex's Lemonade Stand Foundation, Doris Duke Charitable Foundation and the Ellison Medical Foundation. G.Q.D. is an affiliate member of the Broad Institute and an investigator of the Manton Center for Orphan Disease Research and the Howard Hughes Medical Institute. P.C. is supported by grants T32HL007623 and 2T32HL66987-11 from the National Heart, Lung, and Blood Institute (NHLBI). The authors would like to thank R. Zhao and A. De Los Angeles for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Q. Daley.

Ethics declarations

Competing interests

G.Q.D. is a member of the scientific advisory boards of the following companies: Johnson & Johnson, Verastem, Epizyme, Inc., iPierian, Inc., Solasia K.K. and MPM Capital, LLP. P.C. declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

George Q. Daley's homepage

Glossary

Teratomas

Localized tumours in which germ layer derivatives are apparent, often in highly organized patterns resembling normal tissues.

Trophectoderm

The first cells to differentiate from the fertilized egg and that form the outer layer of the blastocyst. They give rise to extra-embryonic tissues, including the placenta.

Unsupervised analysis

Unsupervised analysis methods, such as clustering, discover groups in data without being informed of group labels.This is in contrast to supervised analysis methods, such as the analysis of variance (ANOVA), which find features that distinguish groups.

Seminomas

Malignant but highly treatable germ cell tumours of the testis.

Episome method

A method to force the ectopic expression of reprogramming factors. This method relies on transient transfection of plasmids that encode reprogramming factors.

Embryoid bodies

Three-dimensional, semi-organized aggregates of differentiating pluripotent stem cells.

CpG bisulphite sequencing

Identification of CpG methylation by targeted sequencing of bisulphite-treated genomic DNA. Bisulphite treatment causes the conversion of cytosine to uracil. Because uracil is not a genomic residue, it can be used to infer cytosine methylation.

Dlk1–Dio3 locus

An imprinted region of mouse chromosome 12qF1 containing multiple dosage-sensitive, protein-coding and non-coding genes.

Genetic mosaicism

Genetic heterogeneity of a cellular population that has arisen due to the presence of distinct founder clones. Can occur at the tissue, organ or organism level, or in the dish.

Exome

The nucleotide sequence of the protein-coding portion of a genome as determined by targeted next-generation sequencing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahan, P., Daley, G. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 14, 357–368 (2013). https://doi.org/10.1038/nrm3584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing