Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Caveolae as plasma membrane sensors, protectors and organizers

Key Points

  • Caveolae, submicroscopic pits of the plasma membrane, consist of caveolin membrane proteins and cytoplasmic cavin proteins.

  • Caveolae can bud from the plasma membrane, fuse with early endosomes and recycle back to the cell surface, or they can be turned over via a ubiquitylation-dependent mechanism and targeted to multivesicular bodies.

  • Mutations in caveolins and cavins have been linked to diverse disease states, including cancer, lipodystrophy, cardiomyopathy and muscular dystrophies.

  • The various diseases linked to caveolae dysfunction suggest a crucial cellular role in lipid regulation, membrane organization and in cell protection against physical stress.

  • Flattening of caveolae in response to plasma membrane forces may provide a reservoir of membrane and activate signalling pathways through caveolins and cavins.

  • Caveola dysfunction can influence a range of signalling pathways and lipid regulatory processes with widespread effects on cell function.

Abstract

Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caveolae, caveolins and cavins.
Figure 2: Membrane trafficking of caveolins through exocytosis and endocytosis.
Figure 3: Caveolae and the cytoskeleton.
Figure 4: Mechanosensation and ECM remodelling.

Similar content being viewed by others

References

  1. Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 24, 1424 (1953).

    Google Scholar 

  2. Yamada, E. The fine structures of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayashi, Y. K. et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 119, 2623–2633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajab, A. et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF–CAVIN mutations. PLoS Genet. 6, e1000874 (2010). References 3 and 4 were the first papers showing that loss of cavins is associated with human disease.

    PubMed  PubMed Central  Google Scholar 

  5. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol. 8, 185–194 (2007).

    CAS  Google Scholar 

  6. Pelkmans, L. & Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436, 128–133 (2005).

    CAS  PubMed  Google Scholar 

  7. Richter, T. et al. High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola–cytoskeleton interactions. Traffic 9, 893–909 (2008).

    CAS  PubMed  Google Scholar 

  8. Schlormann, W. et al. The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation. Histochem. Cell Biol. 133, 223–228 (2010).

    PubMed  Google Scholar 

  9. Nixon, S. J. et al. Caveolin-1 is required for lateral line neuromast and notochord development. J. Cell Sci. 120, 2151–2161 (2007).

    CAS  PubMed  Google Scholar 

  10. Peters, K. R., Carley, W. W. & Palade, G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol. 101, 2233–2238 (1985).

    CAS  PubMed  Google Scholar 

  11. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    CAS  PubMed  Google Scholar 

  12. Zhuang, Z., Marshansky, V., Breton, S. & Brown, D. Is caveolin involved in normal proximal tubule function? Presence in model PT systems but absence in situ. Am. J. Physiol. Renal Physiol. 300, F199–F206 (2011).

    CAS  PubMed  Google Scholar 

  13. Thorn, H. et al. Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell 14, 3967–3976 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E. & Davies, P. F. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol. 285, H1720–H1729 (2003).

    CAS  PubMed  Google Scholar 

  15. Scheiffele, P. et al. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140, 795–806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Parat, M. O., Anand-Apte, B. & Fox, P. L. Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol. Biol. Cell 14, 3156–3168 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118, 1003–1014 (1992).

    CAS  PubMed  Google Scholar 

  18. Scherer, P. E. et al. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl Acad. Sci. USA 93, 131–135 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Way, M. & Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 376, 108–112 (1995).

    CAS  PubMed  Google Scholar 

  20. Robenek, H., Weissen-Plenz, G. & Severs, N. J. Freeze-fracture replica immunolabelling reveals caveolin-1 in the human cardiomyocyte plasma membrane. J. Cell. Mol. Med. 12, 2519–2521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Head, B. P. et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J. Biol. Chem. 281, 26391–26399 (2006).

    CAS  PubMed  Google Scholar 

  22. Patel, H. H. et al. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J. 21, 1565–1574 (2007).

    CAS  PubMed  Google Scholar 

  23. Tomassian, T. et al. Caveolin-1 orchestrates TCR synaptic polarity, signal specificity, and function in CD8 T cells. J. Immunol. 187, 2993–3002 (2011).

    CAS  PubMed  Google Scholar 

  24. Fernandez-Rojo, M. A. et al. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 55, 1574–1584 (2012).

    CAS  PubMed  Google Scholar 

  25. Head, B. P. et al. Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons. J. Biol. Chem. 286, 33310–33321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Head, B. P. et al. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS ONE 5, e15697 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    CAS  PubMed  Google Scholar 

  28. Razani, B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277, 8635–8647 (2002).

    CAS  PubMed  Google Scholar 

  29. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA 92, 8655–8659 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Walser, P. J. et al. Constitutive formation of caveolae in a bacterium. Cell 150, 752–763 (2012). Shows that caveolin expression in a prokaryotic system is sufficient to drive the formation of cytoplasmic vesicles analogous to mammalian caveolae. In this model system, caveolins can drive membrane curvature and fission from the membrane.

    CAS  PubMed  Google Scholar 

  31. Hansen, C. G. & Nichols, B. J. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 20, 177–186 (2010).

    CAS  PubMed  Google Scholar 

  32. Bastiani, M. et al. MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 185, 1259–1273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jansa, P., Mason, S. W., Hoffmann-Rohrer, U. & Grummt, I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17, 2855–2864 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gustincich, S. & Schneider, C. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 4, 753–760 (1993).

    CAS  PubMed  Google Scholar 

  35. Izumi, Y. et al. A protein kinase Cδ-binding protein SRBC whose expression is induced by serum starvation. J. Biol. Chem. 272, 7381–7389 (1997).

    CAS  PubMed  Google Scholar 

  36. Ogata, T. et al. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell. Biol. 28, 3424–3436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tagawa, M. et al. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am. J. Physiol. Cell Physiol. 295, C490–C498 (2008).

    CAS  PubMed  Google Scholar 

  38. Hill, M. M. et al. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132, 113–124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, L. et al. Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8, 310–317 (2008). Together with reference 33, the first demonstration of the crucial role of cavin 1 in regulating caveola formation in cells and whole animals.

    PubMed  PubMed Central  Google Scholar 

  40. Hansen, C. G., Bright, N. A., Howard, G. & Nichols, B. J. SDPR induces membrane curvature and functions in the formation of caveolae. Nature Cell Biol. 11, 807–814 (2009).

    CAS  PubMed  Google Scholar 

  41. McMahon, K. A. et al. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 28, 1001–1015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayer, A., Stoeber, M., Bissig, C. & Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11, 361–382 (2010). Identifies a Asp-X-Glu sequence in the N-terminal domain of CAV1 required for exit from the ER. Analyses the assembly of cavin 1 into caveolar domains.

    CAS  PubMed  Google Scholar 

  43. Gustincich, S. et al. The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57, 120–129 (1999).

    CAS  PubMed  Google Scholar 

  44. Fairn, G. D. et al. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194, 257–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wanaski, S. P., Ng, B. K. & Glaser, M. Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Biochemistry 42, 42–56 (2003).

    CAS  PubMed  Google Scholar 

  46. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011). Demonstrates reversible flattening of caveolae and caveolin–cavin dissociation in response to acute mechanical stimuli and shows the importance of the caveolar system in the protection of cells against mechanical stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Breen, M. R., Camps, M., Carvalho-Simoes, F., Zorzano, A. & Pilch, P. F. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS ONE 7, e34516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Naslavsky, N. & Caplan, S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 21, 122–131 (2011).

    CAS  PubMed  Google Scholar 

  49. Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449, 923–927 (2007).

    CAS  PubMed  Google Scholar 

  50. Moren, B. et al. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 23, 1316–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoeber, M. et al. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J. 31, 2350–2364 (2012). Identifies, together with reference 50, the ATPase EHD2 as a new component of caveolae. Shows that EHD2 has a role in the regulation of caveolar dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujita, A., Cheng, J., Tauchi-Sato, K., Takenawa, T. & Fujimoto, T. A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc. Natl Acad. Sci. USA 106, 9256–9261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hansen, C. G., Howard, G. & Nichols, B. J. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci. 124, 2777–2785 (2011). Demonstrates a role for the F-BAR domain protein PACSIN2 in caveola formation.

    CAS  PubMed  Google Scholar 

  56. Senju, Y., Itoh, Y., Takano, K., Hamada, S. & Suetsugu, S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J. Cell Sci. 124, 2032–2040 (2011).

    CAS  PubMed  Google Scholar 

  57. Parton, R. G., Molero, J. C., Floetenmeyer, M., Green, K. M. & James, D. E. Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J. Biol. Chem. 277, 46769–46778 (2002).

    CAS  PubMed  Google Scholar 

  58. del Pozo, M. A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biol. 7, 901–908 (2005).

    CAS  PubMed  Google Scholar 

  59. Millan, J. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nature Cell Biol. 8, 113–123 (2006).

    CAS  PubMed  Google Scholar 

  60. Echarri, A. et al. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J. Cell Sci. 125, 309–3113 (2012). Identifies the actin polymerization pathway that links caveolae to stress fibres and shows that adhesion strength and actin fibres modulate caveola plasticity from flattened structures to caveolar rosettes.

    Google Scholar 

  61. Echarri, A. & Del Pozo, M. A. Caveolae. Curr. Biol. 22, R114–R116 (2012).

    CAS  PubMed  Google Scholar 

  62. Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–154 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    CAS  PubMed  Google Scholar 

  64. Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biol. 12, 11–18 (2010).

    CAS  PubMed  Google Scholar 

  65. Damm, E. M. et al. Clathrin- and caveolin1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Oh, P. et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nature Biotech. 25, 327–337 (2007).

    CAS  Google Scholar 

  67. Rippe, B., Rosengren, B. I., Carlsson, O. & Venturoli, D. Transendothelial transport: the vesicle controversy. J. Vasc. Res. 39, 375–390 (2002).

    CAS  PubMed  Google Scholar 

  68. Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    CAS  PubMed  Google Scholar 

  69. Hayer, A. et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J. Cell Biol. 191, 615–629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Boucrot, E., Howes, M. T., Kirchhausen, T. & Parton, R. G. Redistribution of caveolae during mitosis. J. Cell Sci. 124, 1965–1972 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    CAS  PubMed  Google Scholar 

  72. Le Lay, S. et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7, 549–561 (2006).

    CAS  PubMed  Google Scholar 

  73. Sharma, D. K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15, 3114–3122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Muriel, O. et al. Phosphorylated filamin A regulates actin-linked caveolae dynamics. J. Cell Sci. 124, 2763–2776 (2011). Shows, using high-spatio-temporal resolution particle tracking, that filamin A mediates stable arrest of CAV1 vesicles in confined areas and subsequent internalization.

    CAS  PubMed  Google Scholar 

  75. Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E. & Schwartz, M. A. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biol. 9, 1381–1391 (2007).

    CAS  PubMed  Google Scholar 

  76. Ritz, D. et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nature Cell Biol. 13, 1116–1123 (2011). Identifies monoubiquitylated oligomeric caveolin as a binding partner of the VCP–UBXD1 complex and links caveolin turnover to human degenerative diseases associated with VCP mutations.

    CAS  PubMed  Google Scholar 

  77. Yamanaka, K., Sasagawa, Y. & Ogura, T. Recent advances in p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta 1823, 130–137 (2011).

    PubMed  Google Scholar 

  78. Stahlhut, M. & van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325–337 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wickstrom, S. A. et al. Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev. Cell 19, 574–588 (2010). Demonstrates a loss of caveolae in mice lacking β1 integrins or ILK and identifies the underlying cause as the defective microtubule-dependent trafficking of caveolae to the plasma membrane.

    PubMed  PubMed Central  Google Scholar 

  80. Singh, R. D. et al. Gangliosides and β1-integrin are required for caveolae and membrane domains. Traffic 11, 348–360 (2010).

    CAS  PubMed  Google Scholar 

  81. Sverdlov, M., Shinin, V., Place, A. T., Castellon, M. & Minshall, R. D. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol. Biol. Cell 20, 4531–4540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharma, P. et al. β-dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J. Cell Sci. 123, 3061–3070 (2010).

    CAS  PubMed  Google Scholar 

  83. Lee, J. & Schmid-Schonbein, G. W. Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann. Biomed. Eng. 23, 226–246 (1995).

    CAS  PubMed  Google Scholar 

  84. Dulhunty, A. F. & Franzini-Armstrong, C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250, 513–539 (1975). References 83 and 84 use elegant quantitative electron microscopy and different experimental systems to demonstrate flattening of caveolae in response to plasma membrane deformation.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kozera, L., White, E. & Calaghan, S. Caveolae act as membrane reserves which limit mechanosensitive ICl, swell channel activation during swelling in the rat ventricular myocyte. PLoS ONE 4, e8312 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Czarny, M. & Schnitzer, J. E. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J. Physiol. Heart Circ. Physiol. 287, H1344–H1352 (2004).

    CAS  PubMed  Google Scholar 

  87. Rizzo, V., Sung, A., Oh, P. & Schnitzer, J. E. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273, 26323–26329 (1998).

    CAS  PubMed  Google Scholar 

  88. Sedding, D. G. et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 96, 635–642 (2005).

    CAS  PubMed  Google Scholar 

  89. Yu, J. et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116, 1284–1291 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, B. et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell. Signal. 19, 1690–1700 (2007).

    CAS  PubMed  Google Scholar 

  91. Joshi, B. et al. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J. Cell Biol. 199, 425–435 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Radel, C. & Rizzo, V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol. 288, H936–H945 (2005).

    CAS  PubMed  Google Scholar 

  93. Grande-Garcia, A. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 177, 683–694 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011). First direct demonstration of the role of CAV1 in mechanical regulation of the extracellular environment and its role in tumour invasion.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, B., Radel, C., Hughes, D., Kelemen, S. & Rizzo, V. p190 RhoGTPase-activating protein links the β1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler. Thromb. Vasc. Biol. 31, 376–383 (2011).

    CAS  PubMed  Google Scholar 

  96. Boettcher, J. P. et al. Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2–RhoA-mediated cytoskeletal rearrangements. PLoS Biol. 8, e1000457 (2010). Shows that CAV1 is Tyr phosphorylated in response to bacterial uptake, which induces actin cytoskeletal reorganization via VAV2 and RHOA.

    PubMed  PubMed Central  Google Scholar 

  97. Bai, L. et al. Regulation of cellular senescence by the essential caveolar component PTRF/cavin-1. Cell Res. 21, 1088–1101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hasegawa, T. et al. PTRF (polymerase I and transcript-release factor) is tissue-specific and interacts with the BFCOL1 (binding factor of a type-I collagen promoter) zinc-finger transcription factor which binds to the two mouse type-I collagen gene promoters. Biochem. J. 347 (Pt. 1), 55–59 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Albinsson, S., Nordstrom, I., Sward, K. & Hellstrand, P. Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am. J. Physiol. Cell Physiol. 294, C271–C279 (2008).

    CAS  PubMed  Google Scholar 

  100. Bernatchez, P. N., Sharma, A., Kodaman, P. & Sessa, W. C. Myoferlin is critical for endocytosis in endothelial cells. Am. J. Physiol. Cell Physiol. 297, C484–C492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cai, C. et al. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J. Biol. Chem. 284, 15894–15902 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu, H. et al. Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J. Biol. Chem. 286, 12820–12824 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohsawa, Y. et al. Muscular atrophy of caveolin 3-deficient mice is rescued by myostatin inhibition. J. Clin. Invest. 116, 2924–2934 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ohsawa, Y. et al. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum. Mol. Genet. 13, 151–157 (2004).

    CAS  PubMed  Google Scholar 

  105. Cerezo, A. et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol. Cell. Biol. 29, 5046–5059 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Borza, C. M. et al. Integrin α1β1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J. Biol. Chem. 285, 40114–40124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent growth. Cell 94, 625–634 (1998).

    CAS  PubMed  Google Scholar 

  108. Du, J. et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc. Natl Acad. Sci. USA 108, 9466–9471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goetz, J. G. et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J. Cell Biol. 180, 1261–1275 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  PubMed  Google Scholar 

  111. Sanz-Moreno, V. et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20, 229–245 (2011).

    CAS  PubMed  Google Scholar 

  112. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biol. 9, 1392–1400 (2007).

    CAS  PubMed  Google Scholar 

  114. Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M. P. Identification of peptide and protein ligands for the caveolin- scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272, 6525–6533 (1997).

    CAS  PubMed  Google Scholar 

  115. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422 (1998).

    CAS  PubMed  Google Scholar 

  116. Collins, B. M., Davis, M. J., Hancock, J. F. & Parton, R. G. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin–protein interactions? Dev. Cell 23, 11–20 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Byrne, D. P., Dart, C. & Rigden, D. J. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS ONE 7, e44879 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    CAS  PubMed  Google Scholar 

  119. Sowa, G., Pypaert, M. & Sessa, W. C. Distinction between signaling mechanisms in lipid rafts versus caveolae. Proc. Natl Acad. Sci. USA 98, 14072–14077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bucci, M. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med. 6, 1362–1367 (2000).

    CAS  PubMed  Google Scholar 

  121. Place, A. T. et al. Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol. Pharmacol. 80, 665–672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kronstein, R. et al. Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc. Res. 93, 130–140 (2012).

    CAS  PubMed  Google Scholar 

  123. Blouin, C. M. et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59, 600–610 (2010).

    CAS  PubMed  Google Scholar 

  124. Mattsson, C. L., Csikasz, R. I., Shabalina, I. G., Nedergaard, J. & Cannon, B. Caveolin-1-ablated mice survive in cold by nonshivering thermogenesis despite desensitized adrenergic responsiveness. Am. J. Physiol. Endocrinol. Metab. 299, e374–e383 (2010).

    CAS  PubMed  Google Scholar 

  125. Gonzalez-Munoz, E. et al. Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology 150, 3493–3502 (2009).

    CAS  PubMed  Google Scholar 

  126. Hernandez-Deviez, D. J. et al. Caveolin regulates endocytosis of the muscle repair protein, dysferlin. J. Biol. Chem. 283, 6476–6488 (2008).

    CAS  PubMed  Google Scholar 

  127. Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol. 189, 111–126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Orlichenko, L. et al. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol. Biol. Cell 20, 4140–4152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Upla, P. et al. Clustering induces a lateral redistribution of α2 β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 15, 625–636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi, F. & Sottile, J. Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell Sci. 121, 2360–2371 (2008).

    CAS  PubMed  Google Scholar 

  131. Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic 13, 610–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pellinen, T. et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 15, 371–385 (2008).

    CAS  PubMed  Google Scholar 

  133. Guo, J. et al. Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J. Biol. Chem. 287, 33132–33141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, I. H. et al. The activity of the epithelial sodium channels is regulated by caveolin-1 via a Nedd4-2-dependent mechanism. J. Biol. Chem. 284, 12663–12669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Otsu, K. et al. Caveolin gene transfer improves glucose metabolism in diabetic mice. Am. J. Physiol. Cell Physiol. 298, C450–C456 (2010).

    CAS  PubMed  Google Scholar 

  136. Gervasio, O. L., Whitehead, N. P., Yeung, E. W., Phillips, W. D. & Allen, D. G. TRPC1 binds to caveolin-3 and is regulated by Src kinase — role in Duchenne muscular dystrophy. J. Cell Sci. 121, 2246–2255 (2008).

    CAS  PubMed  Google Scholar 

  137. Langlois, S., Cowan, K. N., Shao, Q., Cowan, B. J. & Laird, D. W. Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol. Biol. Cell 19, 912–928 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pani, B. et al. Activation of TRPC1 by STIM1 in ER–PM microdomains involves release of the channel from its scaffold caveolin-1. Proc. Natl Acad. Sci. USA 106, 20087–20092 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sundivakkam, P. C. et al. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am. J. Physiol. Cell Physiol. 296, C403–C413 (2009).

    CAS  PubMed  Google Scholar 

  140. Fuhs, S. R. & Insel, P. A. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization. J. Biol. Chem. 286, 14830–14841 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nethe, M. et al. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J. Cell Sci. 123, 1948–1958 (2010).

    CAS  PubMed  Google Scholar 

  142. Hezel, M., de Groat, W. C. & Galbiati, F. Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol. Biol. Cell 21, 302–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Isshiki, M. et al. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc. Natl Acad. Sci. USA 95, 5009–5014 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yamamoto, K. et al. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci. 124, 3477–3483 (2011). Demonstrates that localized release of calcium in response to shear stress occurs in caveolin-rich areas of the plasma membrane and is lost in CAV1-deficient cells.

    CAS  PubMed  Google Scholar 

  145. Vassilopoulos, S. et al. Caveolin 3 is associated with the calcium release complex and is modified via in vivo triadin modification. Biochemistry 49, 6130–6135 (2010).

    CAS  PubMed  Google Scholar 

  146. Adebiyi, A., Narayanan, D. & Jaggar, J. H. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J. Biol. Chem. 286, 4341–4348 (2011).

    CAS  PubMed  Google Scholar 

  147. Hoffmann, C. et al. Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. J. Cell Sci. 123, 4280–4291 (2010). Provides evidence for a general effect of CAV1 on membrane properties as indicated by the effects on membrane microdomain mobility and the consequences for pathogen entry.

    CAS  PubMed  Google Scholar 

  148. Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    CAS  PubMed  Google Scholar 

  150. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  Google Scholar 

  151. Carozzi, A. J. et al. Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. J. Biol. Chem. 277, 17944–17949 (2002).

    CAS  PubMed  Google Scholar 

  152. Kirkham, M. et al. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci. 121, 2075–2086 (2008).

    CAS  PubMed  Google Scholar 

  153. Ortegren, U. et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 271, 2028–2036 (2004).

    PubMed  Google Scholar 

  154. Sharma, D. K. et al. The glycosphingolipid, lactosylceramide, regulates β1-integrin clustering and endocytosis. Cancer Res. 65, 8233–8241 (2005).

    CAS  PubMed  Google Scholar 

  155. Sharma, D. K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem. 278, 7564–7572 (2003).

    CAS  PubMed  Google Scholar 

  156. Prinetti, A. et al. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20, 62–77 (2010).

    CAS  PubMed  Google Scholar 

  157. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Trigatti, B. L., Anderson, R. G. & Gerber, G. E. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255, 34–39 (1999).

    CAS  PubMed  Google Scholar 

  159. Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004).

    CAS  PubMed  Google Scholar 

  160. Martin, S. & Parton, R. G. Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol. 16, 163–174 (2005).

    CAS  PubMed  Google Scholar 

  161. Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell 15, 99–110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pol, A. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152, 1057–1070 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bosch, M. et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr. Biol. 21, 681–686 (2011). Identifies mitochondrial dysfunction due to aberrant cholesterol accumulation as a common feature in CAV1-deficient cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G. & Scherer, P. E. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell. Metab. 15, 171–185 (2012).

    PubMed  PubMed Central  Google Scholar 

  165. Meshulam, T., Simard, J. R., Wharton, J., Hamilton, J. A. & Pilch, P. F. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry 45, 2882–2893 (2006).

    CAS  PubMed  Google Scholar 

  166. Simard, J. R. et al. Caveolins sequester fatty acids on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation and protect cells from lipotoxicity. J. Lipid Res. 51, 914–922 (2009).

    Google Scholar 

  167. Pohl, J. et al. Long-chain fatty acid uptake into adipocytes depends on lipid raft function. Biochemistry 43, 4179–4187 (2004).

    CAS  PubMed  Google Scholar 

  168. Cohen, A. W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285, C222–C235 (2003).

    CAS  PubMed  Google Scholar 

  169. Frank, P. G. et al. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am. J. Physiol. Heart Circ. Physiol. 291, H677–H686 (2006).

    CAS  PubMed  Google Scholar 

  170. Cohen, A. W. et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53, 1261–1270 (2004).

    CAS  PubMed  Google Scholar 

  171. Fernandez, M. A. et al. Caveolin-1 is essential for liver regeneration. Science 313, 1628–1632 (2006).

    CAS  PubMed  Google Scholar 

  172. Siasos, G. et al. Adiponectin and cardiovascular disease: mechanisms and new therapeutic approaches. Curr. Med. Chem. 19, 1193–1209 (2012).

    CAS  PubMed  Google Scholar 

  173. Pilch, P. F. & Liu, L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol. Metab. 22, 318–324 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Martin, S. et al. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS ONE 7, e46242 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  176. Berchtold, D. et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature Cell Biol. 14, 542–547 (2012). In yeast cells, mechanical stretching of the plasma membrane causes redistribution of Slm proteins and activation of TORC2, leading to changes in the lipid composition of the plasma membrane possibly analogous to those occurring in mammalian cells upon disassembly of caveolae.

    CAS  PubMed  Google Scholar 

  177. Styers, M. L., O'Connor, A. K., Grabski, R., Cormet-Boyaka, E. & Sztul, E. Depletion of β-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am. J. Physiol. Cell Physiol. 294, C1485–C1498 (2008).

    CAS  PubMed  Google Scholar 

  178. Pol, A. et al. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell 16, 2091–2105 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Manninen, A. et al. Caveolin-1 is not essential for biosynthetic apical membrane transport. Mol. Cell. Biol. 25, 10087–10096 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G. & Parat, M. O. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur. J. Cell Biol. 90, 136–142 (2011).

    CAS  PubMed  Google Scholar 

  182. Gould, M. L., Williams, G. & Nicholson, H. D. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 70, 1609–1621 (2010).

    CAS  PubMed  Google Scholar 

  183. Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biol. 13, 331–337 (2011).

    CAS  PubMed  Google Scholar 

  184. Nassoy, P. & Lamaze, C. Stressing caveolae new role in cell mechanics. Trends Cell Biol. 22, 381–389 (2012).

    PubMed  Google Scholar 

  185. Vorgerd, M. et al. A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology 57, 2273–2277 (2001).

    CAS  PubMed  Google Scholar 

  186. McNally, E. M. et al. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet. 7, 871–877 (1998).

    CAS  PubMed  Google Scholar 

  187. Woodman, S. E., Sotgia, F., Galbiati, F., Minetti, C. & Lisanti, M. P. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62, 538–543 (2004).

    CAS  PubMed  Google Scholar 

  188. Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genet. 18, 365–368 (1998).

    CAS  PubMed  Google Scholar 

  189. Matsuda, C. et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet. 10, 1761–1766 (2001).

    CAS  PubMed  Google Scholar 

  190. Bansal, D. & Campbell, K. P. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14, 206–213 (2004).

    CAS  PubMed  Google Scholar 

  191. Vatta, M. et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114, 2104–2112 (2006).

    CAS  PubMed  Google Scholar 

  192. Cao, H., Alston, L., Ruschman, J. & Hegele, R. A. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 7, 3 (2008).

    PubMed  PubMed Central  Google Scholar 

  193. Dwianingsih, E. K. et al. A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol. Genet. Metab. 101, 233–237 (2010).

    CAS  PubMed  Google Scholar 

  194. Shastry, S. et al. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am. J. Med. Genet. A 152A, 2245–2253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–1397 (1998).

    CAS  PubMed  Google Scholar 

  196. Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol. 162, 2029–2039 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Witkiewicz, A. K. et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am. J. Pathol. 174, 2023–2034 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA 92, 1381–1385 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sunaga, N. et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res. 64, 4277–4285 (2004).

    CAS  PubMed  Google Scholar 

  200. Patani, N. et al. Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Res. Treat. 131, 307–310 (2012).

    CAS  PubMed  Google Scholar 

  201. Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 61, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  202. Felicetti, F. et al. Caveolin-1 tumor-promoting role in human melanoma. Int. J. Cancer 125, 1514–1522 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Thompson, T. C., Timme, T. L., Li, L. & Goltsov, A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis 4, 233–237 (1999).

    CAS  PubMed  Google Scholar 

  204. Yang, G., Timme, T. L., Frolov, A., Wheeler, T. M. & Thompson, T. C. Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer 103, 1186–1194 (2005).

    CAS  PubMed  Google Scholar 

  205. Capozza, F. et al. Genetic ablation of Cav1 differentially affects melanoma tumor growth and metastasis in mice. Role of Cav1 in Shh heterotypic signaling and transendothelial migration. Cancer Res. 72, 2262–2274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Trimmer, C. et al. CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway. Cancer Res. 70, 7489–7499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Xu, X. L. et al. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 61, 7943–7949 (2001).

    CAS  PubMed  Google Scholar 

  208. Zochbauer-Muller, S. et al. Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene 24, 6249–6255 (2005).

    PubMed  Google Scholar 

  209. Bai, L. et al. Down-regulation of the cavin family proteins in breast cancer. J. Cell Biochem. 113, 322–328 (2012).

    CAS  PubMed  Google Scholar 

  210. Parton, R. G., Hanzal-Bayer, M. & Hancock, J. F. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J. Cell Sci. 119, 787–796 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Moreno-Vicente for help in drawing the schematics and A. Echarri, M. Montoya and M. Fernández-Rojo and other members of the Parton laboratory for critical reading of the manuscript. R.G.P. is supported by an National Health and Medical Research Council (NHMRC) Australia Fellowship. M.A.d.P. is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants SAF2011-25047 and CSD 2009–00016. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by MINECO and the Pro-CNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert G. Parton or Miguel A. del Pozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Robert G. Parton's homepage

Miguel A. del Pozo's homepage

Glossary

Lipodystrophy

Abnormal fat metabolism associated with loss of adipose tissue.

Clathrin-coated pits

Plasma membrane invaginations that are coated on their cytoplasmic face by a complex of coat proteins, including clathrin. Best-characterized internalization mechanism for surface receptors, ligands and solutes.

Multivesicular bodies

(MVBs). Endosomal compartment that contains internal vesicles in which membrane proteins destined for lysosomal degradation are concentrated.

Metaphase

Phase of mitosis in which chromosomes are aligned along the equatorial plane of the spindle.

Ubiquitylation

Modification of a protein by addition of a polypeptide, ubiquitin. This post- translational modification acts as a signal to mark a protein for internalization or degradation.

Stress fibres

Contractile actomyosin bundles that are formed by actin filaments, crosslinking proteins (that bind two or more filaments together) and myosin motors.

Mechanosensing

Mechanisms that cells use to detect and respond to forces.

Focal adhesion

Large and dynamic protein complex (composed of integrins and cytoskeletal and signalling molecules) through which the cytoskeleton connects to the extracellular matrix to transmit both mechanical force and regulatory signals.

Store-operated calcium entry

(SOCE). A calcium entry mechanism that is activated by depletion of internal calcium stores in the endoplasmic reticulum.

Membrane rafts

Small, heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that are formed by lipid–lipid interactions and that compartmentalize cellular processes. Small rafts can be stabilized to form larger platforms through protein–protein and protein–lipid interactions.

Eisosome

Stable Pil1- and Lsp1-positive domain of the yeast plasma membrane implicated in mechanosensation and lipid regulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parton, R., del Pozo, M. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14, 98–112 (2013). https://doi.org/10.1038/nrm3512

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3512

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing