Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

To be or not to be assembled: progressing into nuclear actin filaments

Abstract

The paradigm states that cytoplasmic actin operates as filaments and nuclear actin is mainly monomeric, acting as a scaffold in transcription complexes. However, why should a powerful function of actin, namely polymerization, not be used in the nucleus? Recent progress in the field forces us to rethink this issue, as many actin filament assembly proteins have been linked to nuclear functions and new experimental approaches have provided the first direct visualizations of polymerized nuclear actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seeing is believing: visualization of polymeric nuclear actin.
Figure 2: Schematic of the possible regulation of nuclear actin dynamics and nuclear actin filament assembly.

Similar content being viewed by others

References

  1. Schoenenberger, C. A. et al. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 152, 157–168 (2005).

    Article  CAS  Google Scholar 

  2. Scheer, U., Hinssen, H., Franke, W. W. & Jockusch, B. M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111–122 (1984).

    Article  CAS  Google Scholar 

  3. Egly, J. M., Miyamoto, N. G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371 (1984).

    Article  CAS  Google Scholar 

  4. Percipalle, P. Co-transcriptional nuclear actin dynamics. Nucleus 4, 43–52 (2013).

    Article  Google Scholar 

  5. Miyamoto, K. & Gurdon, J. B. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell. Mol. Life Sci. 70, 3289–3302 (2012).

    Article  Google Scholar 

  6. de Lanerolle, P. & Serebryannyy, L. Nuclear actin and myosins: life without filaments. Nature Cell Biol. 13, 1282–1288 (2011).

    Article  CAS  Google Scholar 

  7. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    Article  CAS  Google Scholar 

  8. Obrdlik, A. et al. The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol. Cell. Biol. 28, 6342–6357 (2008).

    Article  CAS  Google Scholar 

  9. Percipalle, P. et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acid. Res. 30, 1725–1734 (2002).

    Article  CAS  Google Scholar 

  10. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Nat. Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  11. Qi, T. et al. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286, 15171–15181 (2011).

    Article  CAS  Google Scholar 

  12. Fenn, S. et al. Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 30, 2153–2166 (2011).

    Article  CAS  Google Scholar 

  13. Kapoor, P., Chen, M., Winkler, D. D., Luger, K. & Shen, X. Evidence for monomeric actin function in INO80 chromatin remodeling. Nature Struct. Mol. Biol. 20, 426–432 (2013).

    Article  CAS  Google Scholar 

  14. McDonald, D., Carrero, G., Andrin, C., de Vries, G. & Hendzel, M. J. Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 172, 541–552 (2006).

    Article  CAS  Google Scholar 

  15. Ye, J., Zhao, J., Hoffmann-Rohrer, U. & Grummt, I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22, 322–330 (2008).

    Article  CAS  Google Scholar 

  16. Hu, Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl Acad. Sci. USA 105, 19199–19204 (2008).

    Article  CAS  Google Scholar 

  17. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    Article  CAS  Google Scholar 

  18. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    Article  CAS  Google Scholar 

  19. Muratani, M. et al. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature Cell Biol. 4, 106–110 (2002).

    Article  CAS  Google Scholar 

  20. Sarshad, A. et al. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet. 9, e1003397 (2013).

    Article  CAS  Google Scholar 

  21. Huang, W. et al. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470, 414–418 (2011).

    Article  CAS  Google Scholar 

  22. Wu, X. et al. Regulation of RNA-polymerase II-dependent transcription by N-WASP and its nuclear-binding partners. Nature Cell Biol. 8, 756–763 (2006).

    Article  Google Scholar 

  23. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    Article  CAS  Google Scholar 

  24. Obrdlik, A. & Percipalle, P. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation Nucleus 2, 72–79 (2011).

    Article  Google Scholar 

  25. Bohnsack, M. T., Stuven, T., Kuhn, C., Cordes, V. C. & Gorlich, D. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nature Cell Biol. 8, 257–263 (2006).

    Article  CAS  Google Scholar 

  26. Gall, J. G. Exporting actin. Nature Cell Biol. 8, 205–207 (2006).

    Article  CAS  Google Scholar 

  27. Samwer, M. et al. The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO J. 32, 1886–1902 (2013).

    Article  CAS  Google Scholar 

  28. Miyamoto, K., Pasque, V., Jullien, J. & Gurdon, J. B. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev. 25, 946–958 (2011).

    Article  CAS  Google Scholar 

  29. Lenart, P. et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812–818 (2005).

    Article  CAS  Google Scholar 

  30. Winder, S. J. et al. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J. Cell Sci. 108, 63–71 (1995).

    CAS  PubMed  Google Scholar 

  31. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell. Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  Google Scholar 

  32. Schuh, M. An actin-dependent mechanism for long-range vesicle transport. Nature Cell Biol. 13, 1431–1436 (2011).

    Article  CAS  Google Scholar 

  33. Belin, B. J., Cimini, B. A., Blackburn, E. H. & Mullins, R. D. Visualization of actin filaments and monomers in somatic cell nuclei. Mol. Biol. Cell 24, 982–994 (2013).

    Article  CAS  Google Scholar 

  34. Baarlink, C., Wang, H. & Grosse, R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864–867 (2013).

    Article  CAS  Google Scholar 

  35. Chesarone, M. A., DuPage, A. G. & Goode, B. L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Rev. Mol. Cell Biol. 11, 62–74 (2010).

    Article  CAS  Google Scholar 

  36. Vartiainen, M. K. Nuclear actin dynamics — from form to function. FEBS Lett. 582, 2033–2040 (2008).

    Article  CAS  Google Scholar 

  37. Weston, L., Coutts, A. S. & La Thangue, N. B. Actin nucleators in the nucleus: an emerging theme. J. Cell Sci. 125, 3519–3527 (2012).

    Article  CAS  Google Scholar 

  38. Archer, S. K., Claudianos, C. & Campbell, H. D. Evolution of the gelsolin family of actin-binding proteins as novel transcriptional coactivators. Bioessays 27, 388–396 (2005).

    Article  CAS  Google Scholar 

  39. Dopie, J., Skarp, K. P., Kaisa Rajakyla, E., Tanhuanpaa, K. & Vartiainen, M. K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl Acad. Sci. USA 109, 544–552 (2012).

    Article  Google Scholar 

  40. Johnson, M. A., Sharma, M., Mok, M. T. & Henderson, B. R. Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress. Biochim. Biophys. Acta 1833, 2334–2347 (2013).

    Article  CAS  Google Scholar 

  41. Mejat, A. & Misteli, T. LINC complexes in health and disease. Nucleus 1, 40–52 (2010).

    Article  Google Scholar 

  42. Simon, D. N., Zastrow, M. S. & Wilson, K. L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1, 264–272 (2010).

    Article  Google Scholar 

  43. Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, E231 (2004).

    Article  Google Scholar 

  44. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature 497, 507–511 (2013).

    Article  CAS  Google Scholar 

  45. Guettler, S., Vartiainen, M. K., Miralles, F., Larijani, B. & Treisman, R. RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Mol. Cell. Biol. 28, 732–742 (2008).

    Article  CAS  Google Scholar 

  46. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories for discussions and C. Baarlink for the image in figure 1. The work in the laboratory of M.K.V is funded by the European Research Council (ERC) Starting grant, Academy of Finland and Sigrid Juselius foundation. Work in the laboratory of R.G. is partly funded by the Deutsche Forschnungsgemeinschaft (GR 2111/2 and SFB 593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Grosse or Maria K. Vartiainen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse, R., Vartiainen, M. To be or not to be assembled: progressing into nuclear actin filaments. Nat Rev Mol Cell Biol 14, 693–697 (2013). https://doi.org/10.1038/nrm3681

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing