Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytoplasmic RNA: a case of the tail wagging the dog

Key Points

  • RNA nucleotidyl transferases related to the canonical nuclear poly(A) polymerase modify various cytoplasmic RNAs in most eukaryotes, with the notable exception of Saccharomyces cerevisiae.

  • Regulated deadenylation is used in many biological contexts to generate cytoplasmic stores of stable, translationally inactive mRNAs. Non-canonical poly(A) polymerases restore such mRNAs to translational competence in a manner that is important for synaptic plasticity in the central nervous system.

  • Non-canonical poly(A) polymerases may also stabilize certain microRNAs, by adding single AMP residues to their 3′ ends.

  • Similarly, cytoplasmic RNA terminal uridylyl transferases add single UMP residues, or oligo(U) tails, to a range of microRNAs and their precursors. This results in the proper processing or turnover of the RNA substrate, according to its identity and the extent of its uridylation.

  • Cytoplasmic uridylyl transferases also modify mRNA 3′ ends in many eukaryotes, targeting the mRNAs for decapping and/or exonucleolytic decay.

  • The addition of non-templated nucleotides to RNA 3′ ends is consequently a widespread and multifaceted aspect of regulation of eukaryotic gene expression.

Abstract

The addition of poly(A) tails to eukaryotic nuclear mRNAs promotes their stability, export to the cytoplasm and translation. Subsequently, the balance between exonucleolytic deadenylation and selective re-establishment of translation-competent poly(A) tails by cytoplasmic poly(A) polymerases is essential for the appropriate regulation of gene expression from oocytes to neurons. In recent years, surprising roles for cytoplasmic poly(A) polymerase-related enzymes that add uridylyl, rather than adenylyl, residues to RNA 3′ ends have also emerged. These terminal uridylyl transferases promote the turnover of certain mRNAs but also modify microRNAs, their precursors and other small RNAs to modulate their stability or biological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytoplasmic mRNA deadenylation, decay and quality control.
Figure 2: Cytoplasmic polyadenylation and the control of synaptic plasticity.
Figure 3: Addition of non-templated nucleotides to pre-miRNAs and miRNAs.
Figure 4: Uridylation of cytoplasmic mRNAs.

Similar content being viewed by others

References

  1. Aravind, L. & Koonin, E. V. DNA polymerase β-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 27, 1609–1618 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ingle, C. A. & Kushner, S. R. Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc. Natl Acad. Sci. USA 93, 12926–12931 (1996).

    CAS  PubMed  Google Scholar 

  3. Schmidt, M. J. & Norbury, C. J. Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. Wiley Interdiscip. Rev. RNA 1, 142–151 (2010).

    CAS  PubMed  Google Scholar 

  4. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wyers, F. et al. Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    CAS  PubMed  Google Scholar 

  6. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

    CAS  PubMed  Google Scholar 

  7. Vanacova, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3, e189 (2005).

    PubMed  Google Scholar 

  8. Lunde, B. M., Magler, I. & Meinhart, A. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity. Nucleic Acids Res. 40, 9815–9824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yates, L. A. et al. Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase. Nature Struct. Mol. Biol. 19, 782–787 (2012).

    CAS  Google Scholar 

  10. Munoz-Tello, P., Gabus, C. & Thore, S. Functional implications from the Cid1 poly(U) polymerase crystal structure. Structure 20, 977–986 (2012).

    CAS  PubMed  Google Scholar 

  11. Aphasizhev, R. & Aphasizheva, I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. Wiley Interdiscip. Rev. RNA 2, 669–685 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, J. H. & Tong, L. Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta 1819, 992–997 (2012).

    CAS  PubMed  Google Scholar 

  13. Nagaike, T., Suzuki, T. & Ueda, T. Polyadenylation in mammalian mitochondria: insights from recent studies. Biochim. Biophys. Acta 1779, 266–269 (2008).

    CAS  PubMed  Google Scholar 

  14. Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nature Rev. Genet. 9, 843–854 (2008).

    CAS  PubMed  Google Scholar 

  15. Parker, R. RNA degradation in Saccharomyces cerevisae. Genetics 191, 671–702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nature Struct. Mol. Biol. 12, 1054–1063 (2005).

    CAS  Google Scholar 

  17. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    CAS  PubMed  Google Scholar 

  18. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    CAS  PubMed  Google Scholar 

  19. Chen, C. Y. & Shyu, A. B. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cell. Biol. 23, 4805–4813 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nature Rev. Genet. 13, 246–259 (2012).

    CAS  PubMed  Google Scholar 

  21. Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432–438 (1996).

    CAS  PubMed  Google Scholar 

  22. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    CAS  PubMed  Google Scholar 

  23. Chen, J., Chiang, Y. C. & Denis, C. L. CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414–1426 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007).

    CAS  Google Scholar 

  25. Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  26. Kruk, J. A., Dutta, A., Fu, J., Gilmour, D. S. & Reese, J. C. The multifunctional Ccr4–Not complex directly promotes transcription elongation. Genes Dev. 25, 581–593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, M., Wilusz, C. J., Peltz, S. W. & Wilusz, J. A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J. 20, 1134–1143 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasudevan, S. & Peltz, S. W. Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol. Cell 7, 1191–1200 (2001).

    CAS  PubMed  Google Scholar 

  29. Mukherjee, D. et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21, 165–174 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chritton, J. J. & Wickens, M. A role for the poly(A)-binding protein Pab1p in PUF protein-mediated repression. J. Biol. Chem. 286, 33268–33278 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldstrohm, A. C., Hook, B. A., Seay, D. J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs. Nature Struct. Mol. Biol. 13, 533–539 (2006).

    CAS  Google Scholar 

  32. Beilharz, T. H. et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE 4, e6783 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  PubMed  Google Scholar 

  35. Zekri, L., Kuzuoglu-Ozturk, D. & Izaurralde, E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J. 32, 1052–1065 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldstrohm, A. C. & Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nature Rev. Mol. Cell Biol. 9, 337–344 (2008).

    CAS  Google Scholar 

  37. Lee, J. E. et al. The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet. 8, e1002901 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    CAS  PubMed  Google Scholar 

  39. Tharun, S. & Parker, R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p–7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075–1083 (2001).

    CAS  PubMed  Google Scholar 

  40. Chowdhury, A., Mukhopadhyay, J. & Tharun, S. The decapping activator Lsm1p–7p–Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 13, 998–1016 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tharun, S. et al. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404, 515–518 (2000).

    CAS  PubMed  Google Scholar 

  42. Lykke-Andersen, S., Brodersen, D. E. & Jensen, T. H. Origins and activities of the eukaryotic exosome. J. Cell Sci. 122, 1487–1494 (2009).

    CAS  PubMed  Google Scholar 

  43. Rissland, O. S. & Norbury, C. J. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nature Struct. Mol. Biol. 16, 616–624 (2009).

    CAS  Google Scholar 

  44. Hu, W., Sweet, T. J., Chamnongpol, S., Baker, K. E. & Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461, 225–229 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McGrew, L. L., Dworkin-Rastl, E., Dworkin, M. B. & Richter, J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815 (1989). The first indication that cytoplasmic polyadenylation is an important regulator of mRNA function and that it is governed by a cis -acting cytoplasmic polyadenylation element.

    CAS  PubMed  Google Scholar 

  46. Weill, L., Belloc, E., Bava, F. A. & Mendez, R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nature Struct. Mol. Biol. 19, 577–585 (2012).

    CAS  Google Scholar 

  47. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).

    CAS  PubMed  Google Scholar 

  48. Eliscovich, C., Peset, I., Vernos, I. & Mendez, R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nature Cell Biol. 10, 858–865 (2008).

    CAS  PubMed  Google Scholar 

  49. Kim, K. W., Wilson, T. L. & Kimble, J. GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proc. Natl Acad. Sci. USA 107, 17445–17450 (2010).

    CAS  PubMed  Google Scholar 

  50. Schmid, M., Kuchler, B. & Eckmann, C. R. Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans. Genes Dev. 23, 824–836 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, L., Eckmann, C. R., Kadyk, L. C., Wickens, M. & Kimble, J. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419, 312–316 (2002).

    CAS  PubMed  Google Scholar 

  52. Kwak, J. E. et al. GLD2 poly(A) polymerase is required for long-term memory. Proc. Natl Acad. Sci. USA 105, 14644–14649 (2008).

    CAS  PubMed  Google Scholar 

  53. Benoit, P., Papin, C., Kwak, J. E., Wickens, M. & Simonelig, M. PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 135, 1969–1979 (2008).

    CAS  PubMed  Google Scholar 

  54. Barnard, D. C., Ryan, K., Manley, J. L. & Richter, J. D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651 (2004).

    CAS  PubMed  Google Scholar 

  55. Lin, C. L., Evans, V., Shen, S., Xing, Y. & Richter, J. D. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA 16, 338–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bava, F. A. et al. CPEB1 coordinates alternative 3′-UTR formation with translational regulation. Nature 495, 121–125 (2013).

    CAS  PubMed  Google Scholar 

  57. Kim, J. H. & Richter, J. D. Opposing polymerase–deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    CAS  PubMed  Google Scholar 

  58. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999).

    CAS  PubMed  Google Scholar 

  59. Morris, J. Z., Hong, A. & Lilly, M. A. & Lehmann, R. twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis. Development 132, 1165–1174 (2005).

    CAS  PubMed  Google Scholar 

  60. Novoa, I., Gallego, J., Ferreira, P. G. & Mendez, R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nature Cell Biol. 12, 447–456 (2010).

    CAS  PubMed  Google Scholar 

  61. Udagawa, T. et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. Cell 47, 253–266 (2012). Shows that hundreds of mRNAs are subject to translational regulation by cytoplasmic polyadenylation in mammalian neurons and provides strong evidence for the involvement of this process in synaptic plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    CAS  PubMed  Google Scholar 

  63. Groisman, I. et al. Control of cellular senescence by CPEB. Genes Dev. 20, 2701–2712 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Burns, D. M., D'Ambrogio, A., Nottrott, S. & Richter, J. D. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011).

    CAS  PubMed  Google Scholar 

  66. Shcherbik, N., Wang, M., Lapik, Y. R. Srivastava, L. & Pestov, D. G. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep. 11, 106–111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Berndt, H. et al. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA 18, 958–972 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakanishi, T. et al. Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Dev. Biol. 289, 115–126 (2006).

    CAS  PubMed  Google Scholar 

  69. Nakanishi, T. et al. Disruption of mouse poly(A) polymerase mGLD-2 does not alter polyadenylation status in oocytes and somatic cells. Biochem. Biophys. Res. Commun. 364, 14–19 (2007).

    CAS  PubMed  Google Scholar 

  70. Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell 1, 201–213 (2001).

    CAS  PubMed  Google Scholar 

  71. Berger-Sweeney, J., Zearfoss, N. R. & Richter, J. D. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn. Mem. 13, 4–7 (2006).

    PubMed  Google Scholar 

  72. Huang, Y. S., Kan, M. C., Lin, C. L. & Richter, J. D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724–2736 (2012). Shows that a substantial number of mouse liver mRNAs undergo circadian variation in poly(A) tail length, possibly in part as a result of cytoplasmic polyadenylation–deadenylation cycles.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, Y. et al. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev. Biol. 1, 9 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ibrahim, F., Rohr, J., Jeong, W. J., Hesson, J. & Cerutti, H. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314, 1893 (2006).

    CAS  PubMed  Google Scholar 

  76. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009). Shows that miR-122 is monoadenylated, and hence stabilized, by the same enzyme that mediates cytoplasmic polyadenylation of mRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. D'Ambrogio, A., Gu, W., Udagawa, T., Mello, C. C. & Richter, J. D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. 2, 1537–1545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwak, J. E., Wang, L., Ballantyne, S., Kimble, J. & Wickens, M. Mammalian GLD-2 homologs are poly(A) polymerases. Proc. Natl Acad. Sci. USA 101, 4407–4412 (2004).

    CAS  PubMed  Google Scholar 

  79. Shen, B. & Goodman, H. M. Uridine addition after microRNA-directed cleavage. Science 306, 997 (2004).

    CAS  PubMed  Google Scholar 

  80. Rissland, O. S. & Norbury, C. J. The Cid1 poly(U) polymerase. Biochim. Biophys. Acta 1779, 286–294 (2008).

    CAS  PubMed  Google Scholar 

  81. Kwak, J. E. & Wickens, M. A family of poly(U) polymerases. RNA 13, 860–867 (2007). Finds that ZCCHC6 and ZCCHC11 behave as poly(U) polymerases in RNA tethering assays in X. laevis oocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rissland, O. S., Mikulasova, A. & Norbury, C. J. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol. 27, 3612–3624 (2007). Describes the uridylation of polyadenylated mRNAs in fission yeast, identifies Cid1 as the corresponding cytoplasmic TUT and shows that human ZCCHC6 has a similar activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ibrahim, F. et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USA 107, 3906–3911 (2010).

    CAS  PubMed  Google Scholar 

  85. Jones, M. R. et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 8, e1003105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biol. 11, 1157–1163 (2009).

    CAS  PubMed  Google Scholar 

  87. Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).

    CAS  PubMed  Google Scholar 

  88. Newman, M. A., Mani, V. & Hammond, S. M. Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA 17, 1795–1803 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Struct. Mol. Biol. 16, 1021–1025 (2009).

    CAS  Google Scholar 

  90. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    CAS  PubMed  Google Scholar 

  91. Lehrbach, N. J. et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nature Struct. Mol. Biol. 16, 1016–1027 (2009).

    CAS  Google Scholar 

  92. Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature 497, 244–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  95. Morozov, I. Y. et al. mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation. Mol. Cell. Biol. 32, 2585–2595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morozov, I. Y., Jones, M. G., Razak, A. A., Rigden, D. J. & Caddick, M. X. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol. Cell. Biol. 30, 460–469 (2010).

    CAS  PubMed  Google Scholar 

  97. Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842–1854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mullen, T. E. & Marzluff, W. F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22, 50–65 (2008). Describes for the first time the uridylation of mRNAs in mammalian cells and implicates this modification in histone mRNA turnover.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Meeks-Wagner, D. & Hartwell, L. H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44, 43–52 (1986).

    CAS  PubMed  Google Scholar 

  100. Schmidt, M. J., West, S. & Norbury, C. J. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17, 39–44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoefig, K. P. et al. Eri1 degrades the stem–loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nature Struct. Mol. Biol. 20, 73–81 (2013). Shows that the 3′–5′ exoribonuclease ERI1 can initiate histone mRNA turnover following its recruitment to uridylated mRNA substrates by the LSM1–LSM7 complex.

    CAS  Google Scholar 

  102. Song, M. G. & Kiledjian, M. 3′ terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologises to those whose work could not be cited directly owing to space constraints and is grateful to D. Scott for comments on the manuscript. Work in the author's laboratory is supported by the Breast Cancer Campaign and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Norbury.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

DNA polymerase-β

(Pol β). A non-processive eukaryotic DNA polymerase that acts in the base excision DNA repair pathway to fill in single-strand DNA gaps.

Poly(A) polymerases

(PAPs). Nucleotidyl transferases that covalently add multiple AMP moieties from ATP to the 3′-OH group of an RNA substrate.

Exosome

In this context, a multisubunit ribonuclease complex with associated endonuclease and 3′–5′ exonuclease activities (note that the same term is used in other contexts to denote a membrane-bound secretory vesicle generated by exocytosis). The catalytic subunit of the cytoplasmic exosome is Rrp44 (also known as Dis3) in yeast and DIS3L in human cells.

Terminal uridylyl transferases

(TUTs). Nucleotidyl transferases that covalently add one or more UMP moieties from UTP to the 3′-OH group of an RNA substrate.

Nonsense-mediated decay

(NMD). A quality control pathway by which mRNAs containing premature termination codons are targeted for destruction. A substantial proportion of fully functional mRNAs are also targeted for degradation by NMD factors.

MicroRNAs

(miRNAs). Short (22 nucleotides) single-stranded cytoplasmic RNAs, processed from highly structured primary transcripts via sequential cleavage by the RNase III enzymes Drosha and Dicer. When loaded onto proteins of the Argonaute family, miRNAs negatively regulate target mRNAs to which they are at least partially complementary.

Sm-like proteins

A widely conserved family of RNA-binding proteins that are structurally related to the Sm proteins. LSM1–LSM7 form a seven-membered ring, initially identified through its association with the U6 small nuclear RNA.

Meiotic maturation

The hormonally triggered resumption of meiosis in a metazoan oocyte, resulting in the formation of an egg.

Synaptic plasticity

The phenomenon, thought to be fundamental to memory and learning, by which synaptic connections between neurons can become potentiated or attenuated as a result of particular patterns of stimulation.

Long-term potentiation

A form of synaptic plasticity in which long-term synaptic strength is increased in response to repeated neuronal stimulation.

PIWI-interacting RNAs

Short, non-coding RNAs that are expressed in animal germ cells and bound by PIWI proteins of the Argonaute family. They act principally to inhibit the expression of retrotransposons.

siRNAs

Short, non-coding RNAs that negatively regulate target gene expression when bound to Argonaute proteins, these approximately 21 base pair duplex RNAs with two-nucleotide 3′ overhangs are generated by Dicer cleavage of double-stranded RNA.

Circularized rapid amplification of cDNA ends

(cRACE). A technique involving circularization of RNA molecules using RNA ligase, subsequent reverse transcription and PCR amplification of the junction corresponding to the two ends of the RNA molecule. It allows the description of the two ends of an RNA molecule without requiring prior knowledge of their precise positions or sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norbury, C. Cytoplasmic RNA: a case of the tail wagging the dog. Nat Rev Mol Cell Biol 14, 643–653 (2013). https://doi.org/10.1038/nrm3645

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing