Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?

Key Points

  • Nucleosomes exist in an assortment of structural states that differ from the various crystal structures.

  • The equilibrium between the nucleosomal states is affected by post-translational modifications (PTMs) of histones, histone variants and DNA sequence.

  • A common interface formed by residues from H2A and H2B is used by several nucleosome-interacting proteins. This 'acidic patch' varies between different histone variants.

  • Several types of chromatin 'secondary structure' may coexist depending on the functional context.

  • An important aspect of chromatin higher-order three-dimensional organization (or 'tertiary structure') is that specific nucleosomes may be distant with respect to their primary structure but may be within interacting distance in the context of tertiary structures, in analogy with protein folding.

  • Small changes in chromatin primary structure yield dramatic effects in its large-scale organization. Numerous and often subtle changes by PTMs, histone variants and DNA sequence can significantly affect nucleosome shape, stability and its protein surface.

Abstract

The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary, secondary and tertiary structure of chromatin.
Figure 2: Nucleosome structure and the acidic patch: a common interaction interface for many nucleosome-interacting proteins.
Figure 3: The many structural states of the nucleosome.
Figure 4: Two models for chromatin secondary structure.
Figure 5: Nucleosome–nucleosome interactions mediated by histone tails and the nucleosomal surface.
Figure 6: A model for chromatin tertiary structure by interdigitation of nucleosomal arrays.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997). This is the first structure of the nucleosome that detailed the interactions between DNA and histones as well as among histone proteins at nearly atomic resolution.

    Article  CAS  PubMed  Google Scholar 

  2. Tremethick, D. J. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128, 651–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Woodcock, C. L. & Dimitrov, S. Higher-order structure of chromatin and chromosomes. Curr. Opin. Genet. Dev. 11, 130–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Tan, S. & Davey, C. A. Nucleosome structural studies. Curr. Opin. Struct. Biol. 21, 128–136 (2011). This article summarizes the structure of all nucleosomes determined up to 2011 and reviews the structure of the nucleosome in complex with proteins and other small molecules.

    Article  CAS  PubMed  Google Scholar 

  5. Killian, J. L., Li, M., Sheinin, M. Y. & Wang, M. D. Recent advances in single molecule studies of nucleosomes. Curr. Opin. Struct. Biol. 22, 80–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172 (2009). A good review of a whole-genome analysis of nucleosome positioning, chromatin remodelling factors, and the interplay between nucleosome positioning and DNA sequence. The Review also discusses the organization of nucleosomes around the promoter and transcription start sites, and the consequences of this for transcription regulation.

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan, N., Hughes, T. R., Lieb, J. D., Widom, J. & Segal, E. Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biol. 11, 140 (2010). A discussion of the controversies surrounding the effect of histone sequence preferences on nucleosome organization in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Clarkson, M. J., Wells, J. R., Gibson, F., Saint, R. & Tremethick, D. J. Regions of variant histone His2AvD required for Drosophila development. Nature 399, 694–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chadwick, B. P. & Willard, H. F. Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J. Cell Biol. 157, 1113–1123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soboleva, T. A. et al. A unique H2A histone variant occupies the transcriptional start site of active genes. Nature Struct. Mol. Biol. 19, 25–30 (2012). This study identified a unique testis histone H2A variant (H2A.Lap1) that occupies chromatin at the transcription start site of active genes in a differentiation-specific manner. Enrichment of H2A.Lap1 at transcription start sites positively correlates with active gene transcription as well as H2A.Z occupancy, which is a mark of genes poised for expression or active genes. H2A.Lap1 lacks the acidic patch domain and consequently folds into less-compacted chromatin than chromatin with regular histone H2A, suggesting its role in transcription activation.

    Article  CAS  Google Scholar 

  18. Andrews, A. J. & Luger, K. Histone modifications: chemistry and structural consequences. In Wiley Encyclopedia of Chemical Biology Vol. 1 (ed. Begley, T. P.) 275–284 (Wiley, 2009).

    Google Scholar 

  19. Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996). This is the first demonstration that the transcription co-activator/adaptor Gcn5 complex is a histone acetyltransferase, directly linking chromatin modifications with transcription regulation. It was proposed that the bromodomains anchor Gcn5 to chromatin. Numerous subsequent studies have shown that bromodomains are acetyl-group-binding domains that recruit and stabilize the binding of different chromatin factors, including histone acetyltransferases, to chromatin.

    Article  CAS  PubMed  Google Scholar 

  21. Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dechassa, M. L. & Luger, K. in Genome Organization and Function in the Cell Nucleus (ed. Rippe, K.) 55–87 (Wiley-VCH, 2011).

    Book  Google Scholar 

  25. Chakravarthy, S., Bao, Y., Roberts, V. A., Tremethick, D. & Luger, K. Structural characterization of histone H2A variants. Cold Spring Harb. Symp. Quant. Biol. 69, 227–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Suto, R. K. et al. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326, 371–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232–235 (2011). The crystal structure of human CENPA nucleosomes, showing that the 13 bp DNA at the entry and exit sites of the nucleosome is only loosely bound.

    Article  CAS  PubMed  Google Scholar 

  28. Dechassa, M. L. et al. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nature Commun. 2, 313 (2011).

    Article  CAS  Google Scholar 

  29. Bao, Y. et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23, 3314–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gautier, T. et al. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 5, 715–720 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindsey, G. G. & Thompson, P. S(T)PXX motifs promote the interaction between the extended N-terminal tails of histone H2B with “linker” DNA. J. Biol. Chem. 267, 14622–14628 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N. & Maeder, D. L. Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region. J. Mol. Biol. 218, 805–813 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Andrews, A. J. & Luger, K. Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 40, 99–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Andrews, A. J., Chen, X., Zevin, A., Stargell, L. A. & Luger, K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA Interactions. Mol. Cell 37, 834–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010). A highly innovative approach to address nucleosome dynamics in vivo . The approach is based on co-translational incorporation of the Met analogue azidohomoalanine (Aha) into newly expressed proteins, and the subsequent modification of Aha by biotin. The affinity-purified micrococcal-nuclease-digested chromatin was then analysed with tiling microarrays. Nucleosomes in active genes, epigenetic regulatory elements and origins of replication were found to undergo fast turnover.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jamai, A., Imoberdorf, R. M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hoch, D. A., Stratton, J. J. & Gloss, L. M. Protein-protein Forster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z. J. Mol. Biol. 371, 971–988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldman, J. A., Garlick, J. D. & Kingston, R. E. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J. Biol. Chem. 285, 4645–4651 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Chang, E. Y. et al. MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 47, 13726–13732 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Angelov, D. et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell 11, 1033–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct. Mol. Biol. 12, 46–53 (2005). Evidence that nucleosomal DNA spontaneously unwraps and re-wraps, resulting in 'transient site exposure' of nucleosomal DNA. This and other work from this team demonstrates that the nucleosome is a dynamic structure that regulates the accessibility of underlying DNA.

    Article  CAS  Google Scholar 

  43. Poirier, M. G., Bussiek, M., Langowski, J. & Widom, J. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyagi, A., Ando, T. & Lyubchenko, Y. L. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50, 7901–7908 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36, 153–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA 108, 12711–12716 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bohm, V. et al. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 39, 3093–3102 (2011). Evidence for an intermediate open state of the nucleosome where the H2A–H2B dimers dissociate from the tetramer while still associated with the DNA. This might be an intermediate during nucleosome disassembly, histone exchange and other processes.

    Article  PubMed  CAS  Google Scholar 

  48. Tims, H. S., Gurunathan, K., Levitus, M. & Widom, J. Dynamics of nucleosome invasion by DNA binding proteins. J. Mol. Biol. 411, 430–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mangenot, S., Leforestier, A., Vachette, P., Durand, D. & Livolant, F. Salt-induced conformation and interaction changes of nucleosome core particles. Biophys. J. 82, 345–356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, C., van der Woerd, M. J., Muthurajan, U. M., Hansen, J. C. & Luger, K. Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2-nucleosome complexes. Nucleic Acids Res. 39, 4122–4135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lavelle, C. & Prunell, A. Chromatin polymorphism and the nucleosome superfamily: a genealogy. Cell Cycle 6, 2113–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Zlatanova, J., Bishop, T. C., Victor, J. M., Jackson, V. & van Holde, K. The nucleosome family: dynamic and growing. Structure 17, 160–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Furuyama, T. & Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell 138, 104–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kingston, I. J., Yung, J. S. & Singleton, M. R. Biophysical characterization of the centromere-specific nucleosome from budding yeast. J. Biol. Chem. 286, 4021–4026 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, W., Colmenares, S. U. & Karpen, G. H. Assembly of Drosophila centromeric nucleosomes requires CID dimerization. Mol. Cell 45, 263–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, T. A., Smith, M. M., Le, S. Y., Sternglanz, R. & Allfrey, V. G. Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue. J. Biol. Chem. 266, 6489–6498 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Torigoe, S. E., Urwin, D. L., Ishii, H., Smith, D. E. & Kadonaga, J. T. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol. Cell 43, 638–648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II. Loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kent, N. A., Adams, S., Moorhouse, A. & Paszkiewicz, K. Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res. 39, e26 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Henikoff, J. G., Belsky, J. A., Krassovsky, K., Macalpine, D. M. & Henikoff, S. Epigenome characterization at single base-pair resolution. Proc. Natl Acad. Sci. USA 108, 18318–18323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chien, F. T. & van Noort, J. 10 years of tension on chromatin: results from single molecule force spectroscopy. Curr. Pharm. Biotechnol. 10, 474–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Ando, T. et al. High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch. 456, 211–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Panchenko, T. et al. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl Acad. Sci. USA 108, 16588–16593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muir, T. W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004). A comprehensive description of the in vitro preparation of nucleosomes from recombinant histone proteins and DNA.

    Article  CAS  PubMed  Google Scholar 

  70. Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding Nɛ-acetyllysine in recombinant proteins. Nature Chem. Biol. 4, 232–234 (2008). An alternative approach that involves the co-translational incorporation of acetyl-Lys into any position in a protein in Escherichia coli.

    Article  CAS  Google Scholar 

  71. Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahto, S. K., Howard, C. J., Shimko, J. C. & Ottesen, J. J. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. Chembiochem 12, 2488–2494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nature Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  Google Scholar 

  75. Trifonov, E. N. Cracking the chromatin code: precise rule of nucleosome positioning. Phys. Life Rev. 8, 39–50 (2011).

    Article  PubMed  Google Scholar 

  76. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaplan, N. et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nature Struct. Mol. Biol. 17, 918–920; author reply 920–922 (2010).

    Article  CAS  Google Scholar 

  78. Zhang, Z. & Pugh, B. F. High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Radman-Livaja, M. & Rando, O. J. Nucleosome positioning: how is it established, and why does it matter? Dev. Biol. 339, 258–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Pugh, B. F. A preoccupied position on nucleosomes. Nature Struct. Mol. Biol. 17, 923 (2010).

    Article  CAS  Google Scholar 

  82. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Corona, D. F. et al. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol. 5, e232 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Vincent, J. A., Kwong, T. J. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nature Struct. Mol. Biol. 15, 477–484 (2008).

    Article  CAS  Google Scholar 

  85. Sala, A. et al. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J. 30, 1766–1777 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Chromatin remodeling by nucleosome disassembly in vitro. Proc. Natl Acad. Sci. USA 103, 3090–3093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dechassa, M. L. et al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38, 590–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Doyen, C. M. et al. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J. 25, 4234–4244 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shukla, M. S. et al. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res. 39, 2559–2570 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, e131 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Gevry, N. Chan, H. M., Laflamme, L., Livingston, D. M. & Gaudreau, L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21, 1869–1881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luk, E. et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143, 725–736 (2010). An intriguing mechanistic study on the histone variant-specific histone exchange by the ATP-dependent chromatin-remodelling enzyme SWR1 through a heterotypic nucleosome. Hyperstimulation of the ATPase activity of SWR1 by heterotypic nucleosomes promotes the exchange of the second H2A.Z–H2B dimer to form homotypic H2A.Z–H2B dimer-containing nucleosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gkikopoulos, T. et al. The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J. 30, 1919–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luk, E. et al. Chz1, a nuclear chaperone for histone H2AZ. Mol. Cell 25, 357–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hassan, A. H., Neel, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Ferreira, H., Somers, J., Webster, R., Flaus, A. & Owen-Hughes, T. Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol. Cell. Biol. 27, 4037–4048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, P. Y., Levesque, N. & Kobor, M. S. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem. Cell Biol. 87, 799–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Altaf, M., Auger, A., Covic, M. & Cote, J. Connection between histone H2A variants and chromatin remodeling complexes. Biochem. Cell Biol. 87, 35–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006). This is the first description of the profound effect of a PTM on chromatin higher-order structure and ATP-dependent chromatin remodelling of nucleosomes.

    Article  CAS  PubMed  Google Scholar 

  103. Hansen, J. C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Nishino, Y. et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31, 1644–1653 (2012). Using cryo-electron microscopy and X-ray scattering, the authors show that mitotic chromosomes are mainly composed of irregularly folded nucleosome fibres with a diameter not more than 11 nm. The report suggests that irregular chromatin organization allows dynamic states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fussner, E., Ching, R. W. & Bazett-Jones, D. P. Living without 30nm chromatin fibers. Trends Biochem. Sci. 36, 1–6 (2011). A thought-provoking review on chromatin compaction.

    Article  CAS  PubMed  Google Scholar 

  106. Maeshima, K., Hihara, S. & Eltsov, M. Chromatin structure: does the 30-nm fibre exist in vivo? Curr. Opin. Cell Biol. 22, 291–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Kruithof, M. et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nature Struct. Mol. Biol. 16, 534–540 (2009).

    Article  CAS  Google Scholar 

  108. Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571–1573 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Robinson, P. J., Fairall, L., Huynh, V. A. & Rhodes, D. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc. Natl Acad. Sci. USA 103, 6506–6511 (2006). Electron microscopy measurements of fully folded fibres with various linker DNA lengths in the presence of linker histones. Two distinict folded chromatin structures were observed. Nucleosomal arrays with 10–40 bp linker DNA produced fibres that were 33 nm in diameter, whereas arrays with 50–70 bp linker DNA produced fibres that were 44 nm in diameter. On the basis of the electron microscopy data, the authors proposed an interdigitated one-start helix model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005). A low-resolution crystal structure of an oligonucleosome. The structure of tetranucleosomes with 20 bp linker DNA suggests a two-start model for the 30 nm chromosome fibre.

    Article  CAS  PubMed  Google Scholar 

  111. Robinson, P. J. & Rhodes, D. Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Curr. Opin. Struct. Biol. 16, 336–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Routh, A., Sandin, S. & Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl Acad. Sci. USA 105, 8872–8877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hieb, A. R., D'Arcy, S., Kramer, M. A., White, A. E. & Luger, K. Fluorescence strategies for high-throughput quantification of protein interactions. Nucleic Acids Res. 40, e33 (2012). Approaches to measure affinities between histones, nucleosomes and nuclear factors.

    Article  CAS  PubMed  Google Scholar 

  114. Caterino, T. L. & Hayes, J. J. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem. Cell Biol. 89, 35–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Huynh, V. A., Robinson, P. J. & Rhodes, D. A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J. Mol. Biol. 345, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Wong, H., Victor, J. M. & Mozziconacci, J. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS ONE 2, e877 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Grigoryev, S. A., Arya, G., Correll, S., Woodcock, C. L. & Schlick, T. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl Acad. Sci. USA 106, 13317–13322 (2009). The two-start zigzag topology and the type of linker DNA bending that defines solenoid models may be simultaneously present in a structurally heteromorphic chromatin fibre with a uniform 30 nm diameter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Depken, M. & Schiessel, H. Nucleosome shape dictates chromatin fiber structure. Biophys. J. 96, 777–784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kepper, N., Foethke, D., Stehr, R., Wedemann, G. & Rippe, K. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys. J. 95, 3692–3705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perisic, O., Collepardo-Guevara, R. & Schlick, T. Modeling studies of chromatin fiber structure as a function of DNA linker length. J. Mol. Biol. 403, 777–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stehr, R., Kepper, N., Rippe, K. & Wedemann, G. The effect of internucleosomal interaction on folding of the chromatin fiber. Biophys. J. 95, 3677–3691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arya, G. & Schlick, T. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc. Natl Acad. Sci. USA 103, 16236–16241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Correll, S. J., Schubert, M. H. & Grigoryev, S. A. Short nucleosome repeats impose rotational modulations on chromatin fibre folding. EMBO J. 30, 2416–2426 (2012).

    Article  CAS  Google Scholar 

  125. Kelbauskas, L., Yodh, J., Woodbury, N. & Lohr, D. Intrinsic promoter nucleosome stability/dynamics variations support a novel targeting mechanism. Biochemistry 48, 4217–4219 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Kelbauskas, L., Woodbury, N. & Lohr, D. DNA sequence-dependent variation in nucleosome structure, stability, and dynamics detected by a FRET-based analysis. Biochem. Cell Biol. 87, 323–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. White, C. L., Suto, R. K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, J., Fan, J. Y., Rangasamy, D. & Tremethick, D. J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nature Struct. Mol. Biol. 14, 1070–1076 (2007). This study demonstrates that the acidic patch is a key macromolecular determinant on the surface of the nucleosome. The acidic patch is required for modulating the extent of chromatin compaction, and it couples this to transcriptional repression.

    Article  CAS  Google Scholar 

  129. Chodaparambil, J. V. et al. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nature Struct. Mol. Biol. 14, 1105–1107 (2007).

    Article  CAS  Google Scholar 

  130. Matsubara, K., Sano, N., Umehara, T. & Horikoshi, M. Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12, 13–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Allahverdi, A. et al. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res. 39, 1680–1691 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nature Struct. Mol. Biol. 15, 1122–1124 (2008).

    Article  CAS  Google Scholar 

  133. Kan, P. Y., Lu, X., Hansen, J. C. & Hayes, J. J. The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol Cell. Biol. 27, 2084–2091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tse, C. & Hansen, J. C. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36, 11381–11388 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Zheng, C. & Hayes, J. J. Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J. Biol. Chem. 15, 15 (2003).

    Google Scholar 

  136. Muthurajan, U. M., McBryant, S. J., Lu, X., Hansen, J. C. & Luger, K. The linker region of macroH2A promotes self-association of nucleosomal arrays. J. Biol. Chem. 286, 23852–23864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chem. Biol. 7, 113–119 (2011).

    Article  CAS  Google Scholar 

  138. Fan, J. Y., Rangasamy, D., Luger, K. & Tremethick, D. J. H2A.Z. alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol. Cell 16, 655–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Chadwick, B. P. & Willard, H. F. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J. Cell Biol. 152, 375–384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 5762, 856–861 (2006).

    Article  CAS  Google Scholar 

  141. Roussel, L., Erard, M., Cayrol, C. & Girard, J. P. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep. 9, 1006–1012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Armache, K. J., Garlick, J. D., Canzio, D., Narlikar, G. J. & Kingston, R. E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334, 977–982 (2011). An intriguing model for chromatin higher-order structure formation by Sir3. The structure of the Sir3 BAH domain–nucleosome complex revealed the extensive interactions of Sir3 with surfaces of the nucleosome. The structural data explain the numerous genetic mutations reported previously and provide a model of how interactions of the BAH domain with the nucleosome surface lead to silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kato, H. et al. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc. Natl Acad. Sci. USA 108, 12283–12288 (2011). NMR and mutational analyis reveal that HMGN2 interacts with the acidic patch of the nucleosome and nucleosomal DNA at the entry and exit regions. The work demonstrates a possible mechanism for how HMGN2 regulates chromatin structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Eltsov, M., Maclellan, K. M., Maeshima, K., Frangakis, A. S. & Dubochet, J. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl Acad. Sci. USA 105, 19732–19737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Daban, J. R. Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures. Biochemistry 39, 3861–3866 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Daban, J. R. High concentration of DNA in condensed chromatin. Biochem. Cell Biol. 81, 91–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Strukov, Y. G. & Belmont, A. S. Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. Biophys. J. 96, 1617–1628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu, Y., Kireev, I., Plutz, M., Ashourian, N. & Belmont, A. S. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J. Cell Biol. 185, 87–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Dietzel, S. et al. The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp. Cell Res. 252, 363–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McBryant, S. J., Adams, V. H. & Hansen, J. C. Chromatin architectural proteins. Chromosome Res. 14, 39–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Canzio, D. et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell 41, 67–81 (2011). An intriguing model for the spreading of HP1 to promote the formation of heterochromatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Georgel, P. T. et al. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem. 278, 32181–32188 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25, 2210–2221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McDermott, G., Le Gros, M. A. & Larabell, C. A. Visualizing cell architecture and molecular location using soft X-ray tomography and correlated cryo-light microscopy. Annu. Rev. Phys. Chem. 63, 225–239 (2011).

    Article  CAS  Google Scholar 

  160. Li, G. & Reinberg, D. Chromatin higher-order structures and gene regulation. Curr. Opin. Genet. Dev. 21, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors dedicate this contribution to the late Jonathan Widom in acknowledgement of his pioneering work on chromatin structure and dynamics. Work in the authors' laboratories is supported by the US National Institutes of Health (grant GM088409 to K.L.) and the National Health and Medical Research Council (grants 471422, 1009850 and 1009851 to D.J.T.). K.L. is supported by the Howard Hughes Medical Institute. We thank U. M. Muthurajan for help with figures 2 and 5, and S. Grigoryev for discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karolin Luger or David J. Tremethick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Karolin Luger's homepage

David J. Tremethick's homepage

Glossary

Post-translational modifications

(PTMs). Chemical modifications added post-translationally (and reversibly) to many histone amino acid side chains by highly specific enzymes. PTMs have important functions in the regulation of transcription and DNA repair.

Architectural chromatin proteins

(ACPs). Abundant nuclear proteins that interact with nucleosomes and influence the three-dimensional arrangement of nucleosomal arrays.

Histone chaperones

A diverse group of nuclear proteins that prevent the aggregation of folded histones with DNA during the assembly of nucleosomes. They are also implicated in the transport of histones into the nucleus.

Centromere

The most constricted and compacted region of a chromosome. Spindle fibres attach to the centromere to equally partition newly replicated sister chromatids between daughter cells during cell division.

Sumoylation

A post-translational modification that is involved in various cellular processes, such as nuclear–cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress and progression through the cell cycle. It involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to other proteins to modify their function.

ATP-dependent chromatin remodelling factors

Large macromolecular complexes that use the energy from ATP hydrolysis to slide, disassemble or otherwise structurally alter nucleosomes.

Fluorescence resonance energy transfer

(FRET; also known as Förster resonance energy transfer). Distance-dependent energy transfer between two chromophores, commonly used to measure conformational changes in a single molecule or to measure interactions between different molecules.

High-speed atomic force microscopy

(High-speed AFM). A high-resolution type of scanning probe microscopy with a demonstrated resolution on the order of fractions of a nanometre. High-speed AFM allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions at high spatiotemporal resolution.

Transient DNA breathing

A transient structural state of the nucleosome characterized by the dissociation of the 10–20 penultimate base pairs of DNA from the histone octamer, leading to 'transient site exposure'.

Open state of the nucleosome

A transient structural state of the nucleosome characterized by the opening of the interface between histone H2A–H2B dimers and (H3–H4)2 tetramers.

Small angle X-ray scattering

(SAXS). A technique in which the elastic scattering of X-rays by a sample is recorded at very low angles. Unlike X-ray crystallography, this technique does not require crystals, and is used to determine the maximum dimensions and overall shape of a macromolecule or a macromolecular complex.

ISWI

The name is derived from its founding member, the Drosophila melanogaster protein imitation switch (ISWI). This family of ATP-dependent chromatin remodellers includes SWI/SNF, ISWI, CHD and INO80 in eukaryotes.

Electron microscopy-assisted nucleosome capture

(EMANIC). A technique whereby nucleosomal arrays or whole cells are subject to controlled formaldehyde crosslinking such that only a few of the nucleosome–nucleosome contacts become covalently linked. Subsequently, the arrays are allowed to disperse in low salt and are imaged by electron microscopy.

Mesoscopic modelling

Pertains to the resolution of the computational approach being the intermediate between the atomic and macroscopic scale. Over a number of years, mesoscopic models of chromatin have been developed that alleviate the prohibitive computational demands of atomistic simulations but incorporate the key features of the chromatin fibre, thereby making it amenable to large-scale simulations.

Ubiquitylation

The covalent attachment of a small protein domain (ubiquitin) to cellular proteins. Monoubiquitylation is a common histone modification; polyubiquitylation (the attachment of multiple molecules of ubiquitin) is usually a marker for intracellular protein transport and degradation. It is found in all cells of higher organisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luger, K., Dechassa, M. & Tremethick, D. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nat Rev Mol Cell Biol 13, 436–447 (2012). https://doi.org/10.1038/nrm3382

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing