Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular control of endothelial cell behaviour during blood vessel morphogenesis

Key Points

  • New blood vessel morphogenesis by angiogenic sprouting requires the highly coordinated and dynamic control of endothelial cell (EC) behaviour. Recent studies shed new light on the complex molecular mechanisms controlling EC behaviour in sprouting vessels, providing important insights into key biological processes, such as branching morphogenesis, tubulogenesis and mechanotransduction.

  • Angiogenic branching involves the hierarchical sprouting of leading endothelial 'tip cells' (TCs) and trailing 'stalk cells' (SCs). Signalling via vascular endothelial growth factor receptor 2 (VEGFR2) and VEGFR3 promotes TC behaviour, whereas expression of the decoy receptor, VEGFR1, limits TC formation.

  • Activation of Notch signalling in SCs negatively regulates VEGFR function to repress TC behaviour and maintain the hierarchical organization of sprouting TCs and SCs. Consequently, the cell-type-specific transcriptional control of Notch ligand expression or the post-translational control of Notch activity act as key control points that determine TC and SC fate.

  • Vascular tubulogenesis is an essential aspect of angiogenic sprouting that generates a blood vessel lumen capable of carrying blood flow. Emerging evidence indicates that vascular lumen formation is a multistep process that is initiated by the acquisition of EC apicobasal polarity and is regulated by cell–matrix interactions, as well as partitioning defective 3 (PAR3) and VEGFR signalling.

  • Increasing evidence shows that multiple signalling pathways have common roles in the guidance of both migrating axonal growth cones and ECs. In particular, signalling mediated by the neuronal guidance cues uncoordinated 5 homologue B (UNC5B), Roundabout homologue 4 (ROBO4), plexin D1, neuropilins, ephrin B2 and ephrin receptor B4 (EPHB4) has key roles in vascular development.

  • Post-transcriptional control of blood vessel formation by microRNAs is involved in the fine-tuning of pro-angiogenic signalling during development, disease and in response to mechanical cues, such as blood flow. Furthermore, recent studies identify important post-translational mechanisms that control VEGFR membrane trafficking and signalling during angiogenesis in vivo.

Abstract

The vertebrate vasculature forms an extensive branched network of blood vessels that supplies tissues with nutrients and oxygen. During vascular development, coordinated control of endothelial cell behaviour at the levels of cell migration, proliferation, polarity, differentiation and cell–cell communication is critical for functional blood vessel morphogenesis. Recent data uncover elaborate transcriptional, post-transcriptional and post-translational mechanisms that fine-tune key signalling pathways (such as the vascular endothelial growth factor and Notch pathways) to control endothelial cell behaviour during blood vessel sprouting (angiogenesis). These emerging frameworks controlling angiogenesis provide unique insights into fundamental biological processes common to other systems, such as tissue branching morphogenesis, mechanotransduction and tubulogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of a functional vasculature from endothelial progenitor cells.
Figure 2: Cellular mechanisms of angiogenic sprouting.
Figure 3: Key signalling pathways that control angiogenesis.
Figure 4: Molecular mechanisms of endothelial tip cell selection.
Figure 5: Molecular mechanisms of lumen morphogenesis.
Figure 6: Fine-tuning angiogenic signals.

Similar content being viewed by others

References

  1. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007).

    CAS  Google Scholar 

  3. Rocha, S. F. & Adams, R. H. Molecular differentiation and specialization of vascular beds. Angiogenesis 12, 139–147 (2009).

    CAS  PubMed  Google Scholar 

  4. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    CAS  PubMed  Google Scholar 

  5. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    CAS  PubMed  Google Scholar 

  6. Jain, R. K. Molecular regulation of vessel maturation. Nature Med. 9, 685–693 (2003).

    CAS  PubMed  Google Scholar 

  7. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong, T. P., Childs, S., Leu, J. P. & Fishman, M. C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    CAS  PubMed  Google Scholar 

  9. You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    CAS  PubMed  Google Scholar 

  10. Bertrand, J. Y. & Traver, D. Hematopoietic cell development in the zebrafish embryo. Curr. Opin. Hematol. 16, 243–248 (2009).

    CAS  PubMed  Google Scholar 

  11. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS  Google Scholar 

  13. De Smet, F., Segura, I., De Bock, K., Hohensinner, P. J. & Carmeliet, P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 29, 639–649 (2009).

    CAS  PubMed  Google Scholar 

  14. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, R. H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Iruela-Arispe, M. L. & Davis, G. E. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 16, 222–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

    CAS  PubMed  Google Scholar 

  18. Affolter, M., Zeller, R. & Caussinus, E. Tissue remodelling through branching morphogenesis. Nature Rev. Mol. Cell Biol. 10, 831–842 (2009).

    CAS  Google Scholar 

  19. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Makanya, A. N., Hlushchuk, R. & Djonov, V. G. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12, 113–123 (2009).

    CAS  PubMed  Google Scholar 

  21. Lohela, M., Bry, M., Tammela, T. & Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21, 154–165 (2009).

    CAS  PubMed  Google Scholar 

  22. Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005).

    CAS  PubMed  Google Scholar 

  23. Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 39, 469–478 (2006).

    CAS  PubMed  Google Scholar 

  24. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med. 9, 677–684 (2003).

    CAS  PubMed  Google Scholar 

  25. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    CAS  PubMed  Google Scholar 

  26. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    CAS  PubMed  Google Scholar 

  27. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    CAS  PubMed  Google Scholar 

  28. Ladomery, M. R., Harper, S. J. & Bates, D. O. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett. 249, 133–142 (2007).

    CAS  PubMed  Google Scholar 

  29. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawamura, H., Li, X., Harper, S. J., Bates, D. O. & Claesson-Welsh, L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 68, 4683–4692 (2008).

    CAS  PubMed  Google Scholar 

  32. Hiratsuka, S. et al. Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is important for vasculogenesis and angiogenesis in mice. Mol. Cell. Biol. 25, 346–354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    CAS  PubMed  Google Scholar 

  34. Fong, G. H., Zhang, L., Bryce, D. M. & Peng, J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999).

    CAS  PubMed  Google Scholar 

  35. Krueger, J. et al. Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138, 2111–2120 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stefater, J. A. III. et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    CAS  PubMed  Google Scholar 

  38. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007). References 37 and 38 are the first papers to identify VEGFR3 as a key determinant of endothelial TC behaviour and define a critical role for Notch signalling in the negative regulation of VEGFR3 expression in endothelial SCs.

    CAS  PubMed  Google Scholar 

  39. Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377–1388 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 21, 2511–2524 (2007).

    CAS  PubMed  Google Scholar 

  41. Phng, L. K. & Gerhardt, H. Angiogenesis: a team effort coordinated by notch. Dev. Cell 16, 196–208 (2009).

    CAS  PubMed  Google Scholar 

  42. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    PubMed  Google Scholar 

  43. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839–844 (2007).

    CAS  PubMed  Google Scholar 

  44. Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA 104, 3219–3224 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007). References 38 and 42–45 are the first to describe the important role of DLL4–Notch signalling in the selection of endothelial TCs during blood vessel sprouting in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    CAS  PubMed  Google Scholar 

  47. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006). References 46 and 47 report that blocking DLL4–Notch signalling inhibits tumour growth by promoting excessive non-productive angiogenesis that results in poor tumour perfusion and hypoxia.

    CAS  PubMed  Google Scholar 

  48. Glomski, K. et al. Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118, 1163–1174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010).

    CAS  PubMed  Google Scholar 

  50. Sainson, R. C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 19, 1027–1029 (2005).

    CAS  PubMed  Google Scholar 

  51. Hogan, B. M. et al. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136, 4001–4009 (2009).

    CAS  PubMed  Google Scholar 

  52. Funahashi, Y. et al. Notch regulates the angiogenic response via induction of VEGFR-1. J. Angiogenes Res. 2, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biol. 12, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  54. Chappell, J. C., Taylor, S. M., Ferrara, N. & Bautch, V. L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17, 377–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009). Shows an unexpected pro-angiogenic role for the Notch ligand Jagged 1, which antagonises EC DLL4–Notch signalling to regulate new blood vessel sprouting in mice.

    CAS  PubMed  Google Scholar 

  56. Roukens, M. G. et al. Control of endothelial sprouting by a Tel–CtBP complex. Nature Cell Biol. 12, 933–942 (2010). Identifies a new role for the transcriptional repressor complex TEL–CtBP in the regulation of VEGFA-mediated DLL4 expression during angiogenesis.

    CAS  PubMed  Google Scholar 

  57. Rebay, I. & Rubin, G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 81, 857–866 (1995).

    CAS  PubMed  Google Scholar 

  58. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998).

    CAS  PubMed  Google Scholar 

  59. Strasser, G. A., Kaminker, J. S. & Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115, 5102–5110 (2010).

    CAS  PubMed  Google Scholar 

  60. del Toro, R. et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116, 4025–4033 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Corada, M. et al. The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev. Cell 18, 938–949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Phng, L. K. et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell 16, 70–82 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011). Reveals that acetylation of the NICD increases its stability, and that this is counteracted by the SIRT1 deacetylase to allow fine-tuning of Notch signalling in sprouting ECs.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nature Rev. Mol. Cell Biol. 9, 887–901 (2008).

    CAS  Google Scholar 

  65. Zovein, A. C. et al. β1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev. Cell 18, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, K. et al. Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev. Cell 20, 526–539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Strilic, B. et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell 17, 505–515 (2009).

    CAS  PubMed  Google Scholar 

  68. Wang, Y. et al. Moesin1 and VE-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137, 3119–3128 (2010). References 65–68 are the first to define molecular mechanisms that control vascular lumen morphogenesis in vivo and reveal key roles for signalling mediated by integrins, small GTPases, PAR3, VEGFA and VE-cadherin.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blum, Y. et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 316, 312–322 (2008).

    CAS  PubMed  Google Scholar 

  70. Herbert, S. P. et al. Arterial–venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  72. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  73. Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004).

    CAS  PubMed  Google Scholar 

  74. Larrivee, B. et al. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev. 21, 2433–2447 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilson, B. D. et al. Netrins promote developmental and therapeutic angiogenesis. Science 313, 640–644 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Castets, M. et al. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev. Cell 16, 614–620 (2009).

    CAS  PubMed  Google Scholar 

  77. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  PubMed  Google Scholar 

  78. Huminiecki, L., Gorn, M., Suchting, S., Poulsom, R. & Bicknell, R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79, 547–552 (2002).

    CAS  PubMed  Google Scholar 

  79. Bedell, V. M. et al. roundabout4 is essential for angiogenesis in vivo. Proc. Natl Acad. Sci. USA 102, 6373–6378 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones, C. A. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nature Med. 14, 448–453 (2008).

    CAS  PubMed  Google Scholar 

  81. Jones, C. A. et al. Slit2–Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nature Cell Biol. 11, 1325–1331 (2009).

    CAS  PubMed  Google Scholar 

  82. Koch, A. W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev. Cell 20, 33–46 (2011). Reports that the interaction of two unrelated axon guidance receptors, ROBO4 and UNC5B, negatively regulates VEGFA signalling in ECs to inhibit angiogenesis.

    CAS  PubMed  Google Scholar 

  83. Marlow, R. et al. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc. Natl Acad. Sci. USA 107, 10520–10525 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003).

    CAS  PubMed  Google Scholar 

  85. Suchting, S., Heal, P., Tahtis, K., Stewart, L. M. & Bicknell, R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J. 19, 121–123 (2005).

    CAS  PubMed  Google Scholar 

  86. Yazdani, U. & Terman, J. R. The semaphorins. Genome Biol. 7, 211 (2006).

    PubMed  PubMed Central  Google Scholar 

  87. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    CAS  PubMed  Google Scholar 

  88. Gitler, A. D., Lu, M. M. & Epstein, J. A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell 7, 107–116 (2004).

    CAS  PubMed  Google Scholar 

  89. Torres-Vazquez, J. et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev. Cell 7, 117–123 (2004).

    CAS  PubMed  Google Scholar 

  90. Kim, J., Oh, W. J., Gaiano, N., Yoshida, Y. & Gu, C. Semaphorin 3E–Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev. 25, 1399–1411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002).

    CAS  PubMed  Google Scholar 

  92. Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11, 53–67 (2007).

    CAS  PubMed  Google Scholar 

  93. Gerhardt, H. et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev. Dyn. 231, 503–509 (2004).

    CAS  PubMed  Google Scholar 

  94. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999).

    CAS  PubMed  Google Scholar 

  95. Kuijper, S., Turner, C. J. & Adams, R. H. Regulation of angiogenesis by Eph–ephrin interactions. Trends Cardiovasc. Med. 17, 145–151 (2007).

    CAS  PubMed  Google Scholar 

  96. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    CAS  PubMed  Google Scholar 

  97. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010). References 96 and 97 show that ephrin B2 unexpectedly positively regulates angiogenesis upon its interaction with VEGFR2 and VEGFR3, which promotes receptor internalisation and signalling from intracellular endosomal compartments.

    CAS  PubMed  Google Scholar 

  98. Kim, Y. H. et al. Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135, 3755–3764 (2008).

    CAS  PubMed  Google Scholar 

  99. Calvo, C. F. et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev. 25, 831–844 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, C. H. et al. Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development. Dev. Dyn. 240, 1412–1421 (2011).

    CAS  PubMed  Google Scholar 

  101. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuhnert, F. et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135, 3989–3993 (2008).

    CAS  PubMed  Google Scholar 

  104. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Nicoli, S. et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464, 1196–1200 (2010). Provides evidence that blood flow positively influences angiogenesis by promoting the Klf2a-mediated expression of a pro-angiogenic miRNA, miR-126.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Med. 16, 909–914 (2010).

    CAS  PubMed  Google Scholar 

  107. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    CAS  PubMed  Google Scholar 

  108. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lanahan, A. A. et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell 18, 713–724 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Reynolds, A. R. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nature Med. 15, 392–400 (2009).

    CAS  PubMed  Google Scholar 

  111. Wu, C. et al. Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J. Biol. Chem. 286, 23511–23520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    CAS  PubMed  Google Scholar 

  113. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Allende, M. L., Yamashita, T. & Proia, R. L. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102, 3665–3667 (2003).

    CAS  PubMed  Google Scholar 

  116. Paik, J. H. et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev. 18, 2392–2403 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    CAS  PubMed  Google Scholar 

  118. Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289.

    CAS  Google Scholar 

  119. Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006).

    CAS  PubMed  Google Scholar 

  120. Chen, S. & Lechleider, R. J. Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ. Res. 94, 1195–1202 (2004).

    CAS  PubMed  Google Scholar 

  121. Domenga, V. et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 18, 2730–2735 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    CAS  PubMed  Google Scholar 

  123. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nature Cell Biol. 10, 527–537 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work could not be referenced directly because of space limitations. S.P.H. is a Wellcome Trust research career development fellow. Vascular work in the laboratory of D.Y.R.S. is supported in part by grants from the US National Institutes of Health (HL54737) and the Packard Foundation to D.Y.R.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shane P. Herbert or Didier Y. R. Stainier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Didier Y. R. Stainier's homepage

Glossary

Ischaemic diseases

Disease states that are characterized by a restriction in the blood supply to an organ or tissue, such as ischaemic heart disease, stroke or ischaemic colitis.

Metastasis

The spread of cancer cells from the site of a primary tumour to distant parts of the body.

Basement membrane

The sheet-like layer of laminin- and collagen-rich fibres that separates endothelial or epithelial cells from adjacent tissues.

Filopodial extensions

Thin cytoplasmic protrusions containing bundled actin filaments that dynamically extend from the leading edge of migrating cells and explore the surrounding microenvironment.

Neuronal growth cones

Specialized guidance structures located at the distal end of developing axons that sense extrinsic guidance cues to direct the movement of axons.

Vascular lumen

The open and unobstructed (or patent) space within a hollow vascular tube that is lined by endothelial cells and through which blood flows.

Anastomosis

The union of two hollow structures so as to interconnect and establish continuity between both structures.

Abluminal surface

The surface away from the lumen (to distinguish it from the luminal surface, which is the one adjacent to the lumen).

Intussusceptive angiogenesis

Blood vessel formation by the splitting of existing vessels. Intussusception involves the insertion of a tissue pillar into the vascular lumen to split a single parent vessel into two daughter vessels.

Hypoxia

A deficiency in the supply of oxygen to an organ or tissue.

Haploinsufficient

The term applied to a gene of a diploid organism if a single copy of that gene is insufficient to support a wild-type phenotype.

Heparan sulphate

A linear polysaccharide present on the surface of cells or in extracellular matrices, which function by binding wide varieties of proteins (such as growth factors) to regulate key biological processes.

Decoy receptor

Generally considered to be a non-signalling receptor that binds a ligand and reduces the interaction of the bound ligand with its signalling receptor.

Lymphangiogenesis

The formation of new lymphatic vessels by sprouting from pre-existing vessels.

Lateral inhibition

In developmental biology, this term refers to the ability of a cell to inhibit the differentiation of its immediate neighbours through cell–cell interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, S., Stainier, D. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12, 551–564 (2011). https://doi.org/10.1038/nrm3176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing